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A NECESSARY OPT~~AL~~ &~~~TI~~ fN A 
GAME OF ENCOUNTER AT A PRESCRIBED INSTANT* 

A necessary condition is derived, which must be satisfied by the positional strategy 
minimizing the game's value. ft is shown that for a linear system and a convex tar- 
get function this condition is sufficient. The paper abuts the researches in /l-4/. 

1. We consider ‘a discrete conflict-cantrolled system described by the equation 

Here x is an m-dimensional vector, r,,(z, <...<z,, =6 are fixed i.nStSntS, the function f 
is continuous together with its partial derivatives with respect to XJ (j = l,...,n), u aad v 
are the players controls, P (zi), Q(Ti) are convex compacta. Let the target function CI (2) I 
continuous. together with its partial derivatives, be pxescribed. PZayer u must minimize a(x) 
at instant 5, = 6 and player it must maximize it. 

The game is formalized as follows. By a positional strategy of its player Uwe shall 
mean any function U = E( (ai, xf satisfying the inclusion u(z~,s}EP(f~). Just as in /1,4/,any 
solution of the equation 

is called a polygonal line X I*f = 2 f-,s,za* U, Vi-U. A motion zf-I =XI*,te,+, Uf of system 
Cl.11 f generated by strategy U, is any limit of the convergent sequence of polygonal lines 
5% t-1 = .% I', r@? .rO, u, nk I'& i.e. 

z izJ = lim zk It,), k + 00 

We formulate the following problem. 

Problem 1. Find a strategy u, of the first player, satisfying the equality 

2. Let us derive the main results. For this purpose we introduce the following defini- 
tions. Suppose that some strategy Uhas been selected. We say that at instant 'ci the motion 
~1.1 = z[.,tO..zO, Uj has passed into the state sIt*l = {z [Tll, FJ IZA) if there exists a sequence 
of polygonal lines x2:,(-f - x[-,&z@ uv vx [-If anver#ng to this motion and satisfying at in- 
stant zi the equality 

I1 frrl = lim It frr. 3& fz*l), k - = 

We shall say that the motion x [-I = z I*, rgr zO, U] passes from state $ (~~1 = (x !rif, w [ri]} into 
state S Iti+, = (5 [Ti+tl. u IZf4.J) if we can find a sequence of polygonal lines 
U,a, I. 11 

sk ['I = 2 I', r,,,%,, 
converging to this motion and satisfying the xelations 

w u (TC,S) we denote the control corresponding to state (T~,s) = {T~,~,u). hny motionfarwhieh 
the equality 

p = 0 (so Ial) = max u (xI6,~~, zO, VI) (2.1) 
X1.J 
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is valid is called the maximizing motion rI [.I = x0 [.. q,, z,,. [‘I for 

Let S (ti) (i = 0, . . ., n - 1) be a collection of all states s 
motion (2.1) passes at instant Ti, i.e. 

S (Ti) = {s = {I, U}, Z = .ro [Zi, t,J. 50, UI, 

strategy L. 

through which the maximi.rln.: 

1-q ,._.:; 

u = u (Zi, s), (J (x0 [6, Ti, s, Cl) = p}, i = 0, . . ., n - 1 

s (6) = w = (10, w = 270 [6, To, Jo, VI} 

By S(stcl,zi, s*) we denote the set of all states through which the maximizing motion (2.1) pas- 

ses at instant Ti+l under the condition that this motion passed through state s* at instant zi. 
i.e. 

s (T.i+,, ai, S*) = {s E S (?i+l), S = {X0 [Ti+ll, u ki+Il}> (2.3) 
u lri+,l = u (Q+,, S), IO [Tic11 = 50 i-ci+l, tit &+c, ul} 

Let {p (At Ti+l, T:, s), A C S (ti+l), s ES (pi), i = 0, . . ., IZ - 1) be the system of regular probabilistic 
Bore1 measures concentrated on the sets S(ricl, T~,s) from (2.3) and integrable with respect to 
the ss S (7J from (2.2). For this system of measures we set 

(2.4) 

\i=O,...,n-2) 

v (At ‘Ti+l, sir s*) = B (A, ‘~iclr pi> s*) 

v (A, tjy ziv se) = s V(~,Tj,Ti+lrS)B(dS,Ti+ltZitS*) 
%+I, 

(j = i + 2, . . ., n - 1) 

a6 
al= p-,j=l,..., m , I , I $= 2, ! k,j=l,...,m 

3 I 

(G*is the matrix adjoint to G) 

Theorem 1. In order for strategy Uto solve Problem 1 it is necessary that for this 

strategy there exist a system of measures {P(A,ti+,, zi 1 s),A C S (ti+l), s E S (pi), i = 0, . . . . IL - 1) 
for 

S (Ip(li~s~~Y(4~s~)V(ds~Ti~rO~S~)~qSy)uEP(r,J min (~(Ti,s).u)v(ds,zi,To,s~) (i=l,...,n--1) 
S(Ti) t 

are 
the 

Let 

for 

fulfilled, where (p.q) is the scalar product of p and '7, {Ti,S.+) = {Ti, r*,U*}, u* = u (Ti,S*). 
quantities I# (ri, s), Y (., 7i, 'to, sO) are prescribed in accord with (2.4). 
We remark that the $(T~,s) in (2.4) are analogous to the adjoint functions from /2,5/. 
us consider a linear conflict-controlled system 

r [ti+ll = 4 (t2) Z [Zil + u. -c v, Z kJ = z0 (2.6) 

which the functions I()(T~,s) are given by the formulas 

(2.7) 

+(TirS*)=lf*(%+~) S Ir,(?i+l,S)B(dS,Zi+l,Zi,S+) (i =O, . ..4--2) 
S&+,1 

Theorem 2. Let the discrete motions be described by the linear Eq.(2.6) and let the tar- 

get functiono(z)be convex. Then, in order for strategy Uto solve Problem 1 it is necessary 

and sufficient that conditions (2.5), wherein the functions 9 (T~,s) have been defined by rela- 

tions (2.7), be fulfilled for some system of measures (I: (il. zi+,, ti, s), iI C S (Ti+l), S E S (Ti)) . 
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3. We derive auxiliary statements which will aid the proof of Theorem 1. Suppose that 

some strategy of the first player has been selected and that positive numbers a and E have 
been prescribed. By {x, I.1 = r,z [., tO, r,,, VI} we denote the collection of all a-maximizing mo- 
tions for strategy 77, i.e. 

e (.k [*I) > P - a, p = nmX 0 (5 [6, rO, zO, U1) (3.1) 
XL.1 

Let S,(ri) be the set of all possible states s = (2,~) through which the a-maximizing mo- 

tions (3.1) pass at instant Zi, where 

s, (7,) = M', = {w, IP=zara,r,, 4, Lrl,a (w) > p - a);S,(Zi+l.tj, 

is the set of all states through which the a-maximizing motions pass at 
the condition that these motions passed through state s,'at instant =i ; 
S, (Tl+l), S E S (Ti)r i = 0, . . ., ?t - 1) is a system of regular probabilistic 

centrated on S, (Ti+tl tir Se) and integrable with respect to s* CZ S(T~). 
We set 

%(‘iy ‘*) = 5 $ (Y+l+ x, $pB(Ti+l% S) fb (dS* Tj+l* Tir S*) 
%(%+1) 

(i = 0, . . ., n - 2) 

“)3 CA? Ti+l7 TIP S*) = pa (A v Ti+lt Tir S*) 

(zi7 x*) $6 tzit s+)) ‘tz - x *)> + 

s*) 

instant =l+l under 

{fl= (A, Ti+l? Tir se), A c 
Bore1 measures con- 

(3.2) 

(3.3) 

(3.4) 

Herelp lis the Euclidean norm of p, re G, where G is a compactum in Rrn) containing all pos- 
sible positions z =z [.I which result from (1.1) when IA= P(z~), VIZ o(ri) (i ~0% . . ., n - 1). By 
analogy with the material in /1,4/ we define a strategy U,,L= u(T~,s[.c~~,z) with leader 

x I*, 70, 20, VI, s Izrl = (3 hll, u hil) 
We say that the strategy c',,= = u (ri, s [ril,z) is a corrected strategy with leader x [., TO, x0, 

Ul. s ITil = (z [Til, u k*l} if this strategy is specified by the following rule; for s hiI E S, (ti) 
and 1 z (~~1 - z I< EK’ we set 

I/ (ri, s [Cil, z) = (1 - E) u (it, S I~tl) + EU* (‘Cir S (TiIr Z) (3.5) 

Here U* = U* (ri, S IriI. Z) is any control satisfying the relation 

ma3 rp~('ci, S[7i], 2, U*,U, E) =_:!l) IYgaX rpa(zi,S[li], 2, u,a, E)z (3.6) 
B 
max min cffl (Ti, S [Tilv z9 
B ueJq 

u, a,e)=d(TjrSITi,lrZ,a, E) 

where fi = (fia (et ?!+I. G, S), 1 = i, . . ., m-1) while the function cps (ri. S, z, U, a, e) is defined 
in accord with (3.31, (3.2). If s [ril does not belong to 
z I> EK’ is valid, then we set 

S,(.ci) or if the inequality f s[ti] - 

U (Ti. s IZJ, z) = u (Tf, s hil) (3.7) 

We notethat by virtue of the continuity of &db’x,affax the compactnessofsets &((T~+~,TJ,s), 
as well as of (3.2) and (3.3) it follows that the maximum in (3.6) is achieved in the class 
of regular Bore1 measures fi = {&(A, zlcl. II, s),A C S, (T(+~), s E S, (z,), 1 = i, . . ., n - 1) integr- 
able with respect to s -& S,(z,). 
since P(ri) is a convex compacturn, 

The operations of minimum and maximum in (3.6) can permute 
the function (~~(ri,s, z,u,a,e) is linear in U, and B= (., 

T++~, rir S) /6/. In addition, the motions z I.1 =z[., T(.S [tiI,z, Uo,r, v [.I] are connnected with 
the motions of the leader x F-1 = z [., rl. s[qI. C’, v I.11 = x f., ‘50, ~0. U, v f-11 by the equalities 



_’ . s 

if 
s [T~I = {Z (~11, u IT*]) E Sa (.t~), I z [TiI - z [TiI I < EK 
Z [Tf+,l = f (Tff 2 [Til) + ZJ (Tit S Ltil) + u lTil (3.9) 
x [ti+J = f (Tl, I htl) + u (Ti. s htl) + y hi1 

if 

We observe that for the prescribed states S[ri] through which the motion 5 I., ~0, &I. CT] Pas- 
ses, this motion is completely determined by the equations r = v [ri] E Q (q) (i = 0. . . . n - 1). 

Z [Tj+ll = f (Tiy 2 [Til) + (1 - e) u tt** s ITi]) + 
&U* (713 S [Til, Z [Til) f u [til 

Lemma 1. Suppose that the motion I [.I = xl., 7,,,q,, Ul of (1.1) passed into the state 
s hiI ES, (q) at instant Ti . Then for any positions z and realizations u = ul.1 such that 
1 z hiI -z I< eK’, s[-61~ W,, the strategy U,,, of (3.5) and (3.6) guarantees the estimate 

u (z IN) < p + d hi, s hiI, 2, a, e) + 0 (~1 (3.10) 

where z [*I = z [., Tir Z, s [T~I, U,,,, v[.]] is the motion in (3.8) matched with the motion of the 
leader x[.,rl,s[ri], U,v[.]], o (e) is a quantity of a higher order of smallness XI comparison 
with e,p, d(zi,s,z,a,e) are defined in accord with (3.11, (3.6). 

PrOOf. At instant T,,_1 , for s Ir,_,] E s, (tn+), 15 [T~_~I - I 1 g EP-*~ I I61 E w, , from !3.5) , 
(3.61, (3-E), (3.1) we have 

8 (2 [W< p+ zy r<q (z [^el). ($ (m_l* = [a,_*11 (2 - IIT,_,l)) > + 

E <G (z[ftl).( u* [m-1l - u [r,_$ >I + 0 (4 
u* [&*I = u* (Tn_,, s [zn_& a* u [Tn_,l = u &_,’ s L$+ll) 

Hence from (3.2), (3.31, (3.6) we obtain 

a(2 PI) < p+mgax 
[ i < g N,_l. 2 [r,_,l) * (fn_+v s[+*-,I) ) x (2 - = ~%.*I) > -+- 

~<w(T~_~,~[~~~-_~I).(~*I~~--~I-~~T~-,I)>]+~(~)= ~,+d(~n-~rs[~,_l~,~.a,e)+o(e) 

Thus, inequality (3.10) has been proved for instant G-l * We assume that (3.10) holds for 
i= ~+1 and we obtain the required assertion for i = 1. As a matter of fact, from (3.81, 

(3.5) it follows that if position z and state 81~~1 E&@I) are connected by the relation 

I+ [Tl] - zl< eK'. then the estimate I r bl,,l - 2 b[+,l I < eK {+I will be fulfilled for the motions 
z [zl+I] = z[r,+,,rl, z,s[zll, u,,,,~[.II,~[~,+,I = z II~+~.v,s hl. u, vl.11 from (3.8) - Then, according to (3.10) I 
(3.2), (3.3), (3.6), (3.81, (3.1) we obtain 
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The latter relation completes the Lemma's proof. 
The next lemma follows immediately from Lemma 1 as well as from (3.7) and (3.9). 

Lemma 2. One of the estimates: either 

0 (z 161) < p + d(7,, Sol zo, c.7 E) + 0 (E) (3.11) 

or u (z [@I) < p - a + cMKn 

is fulfilled for any motion ~1.1 =z[~,7,,s,,U,,,,u[~ll of (3.8), (3.91, generated by an a,e- 
corrected strategy with leader. Here so =(G,, UO), uo=U(70, 20) and the quantities d(zi, S, z,a, E), 

K. M are prescribed in accord with (3.61, (3.4). 
Let Z(T~,~, E) be the set of all positions z for each of which we can find a motion 

z[.li= s[.,~,,zo, U] satisfying the estimate ]s[T~] -z l<eK. We introduce the set Z1 (.Cir a, 
E); here zE Z1 (zi,a,E) if for any motion 7 [.I = sl~,r,,q,U1 satisfying the inequality 1 z hi] 
- z ( < E& and any state s 17ij = {~[7~], u(7iI) through which this motion passed at instant 

'ti , the inclusion S [7*1 E S, (zi) is valid. Wow we set 

Z, (7i, a, e) = Z (7:,a, E) \ Z, (7i, a, E), Zz (7i, a, E) = R("') \ Z (Ti, a, E) 

Here A \ B is the difference of sets A and B,R(*) is an m-dimensional space. An a,E- 

corrected positional strategy U,,, = u~,~(~*,z) is the function determined by the conditions 

l&p, (‘Civ z) = (I - E) U (7i, S*) + Eu* (7i, Se, z) (3.12) 

Cp (Zi, S*, Zt u*7 a, E) = min d (zi, s, z, a, E) 

Z E Zi (7ir c,E),S = {G:}, S* = {I*, U*), 121 - 2 1 f SK’, 

Ix- z I < EK* 

(the functions ‘p (Ti. S, Z, U, a, e), d (pi, s, z, a, E) are defined by relations (3.3) , (3.6) ) 

(3.13) 
U,,e (7i, z) = u (7i, S*) 

S - {z*, *- 7~~) G S, (7& z E Zz (7i, a, e), IG -z I Q eK’ 
u~,~ (tf, z) = u (71, z), z E Z3 (7t, a, e) 

Comparing (3.12) and (3.13) with (3.6) and (3.7) from Lemmas 1 and 2 , we obtain the following 

result. 

Lemma 3. An a, E-corrected positional strategy u,,, guarantees one of estimates (3.11) 

foranymotion zl.1 =Z[-,To,50, U,,t.l. 

Hence follows the next statement. 

Lemma 4. In order for strategy Uto solve Problem 1 it is necessary that for any a>0 

a system of measures b = {& (A, 7i+lt zi, s), A c S, (~t+~), s E S, (7t) (i = 0, . . ., n -1)} be found 
satisfying the conditions 

(~E(70,S0)~U(70,S0)) = n& 
0 
,(li$(7O,SO)'N 

(3.14) 

s (‘#~(7i,S)*u (71, s)) v~(dss ziv70r SO)= 
S&i) 

s min (Jib (Tit S) *u) vp,(d~, 7ir TO, SO) (i = 1,. . . , TZ - 1) 
s,(q) u=p(%) 

Indeed, suppose that relations (3.14) are not fulfilled for some a. Then we can find 
e= e(a) such that for the positional strategy u,, of (3.12), (3.13) we in accord- 

3. 
u (: [6, 7D1 zag U,J mar (z til) 

xt.1 

where z[.,ro,so, I.,,,1 is any motion generated by strategy U,,,. Thus, strategy Uis not a 
solution of Problem 1, which proves Lemma 4. 

We now complete the proof of Theorem 1. We set a = a (T) = l/r (r = 1, 2, . . .). By Lemma 4 
there exists a sequence of measures {PO (A,T~+~, Ti, s), A C S,z (~i+l). S E S, (pi), i = 0, . . ., n - I}, a = 
I'r, satisfying relations (3.14). From this sequence we can pick out a subsequence of measure 

& 64, 7i+1. 7,. S)). which, on the strength of the inclusions S(Ti)C S,(Ti), Will weakly* con- 
verge to some system of measures 

sets S (T~+~, TV. 
s). s E s (Ti) of (2_2) I/3 g:,;iyq ziq 4, A C S (Ti+l!* s E S (ri)I, concentrated on the 

will converge to \i' (7;. S), 1' ('a 'Cl, 70. So) 
Here the functions $E((zi,s), vE (., z~, to, so) of (3.2) 

of (2.4), which are defined by the system of measures 
{I' (A. 7iL1. T,. s). A C 5' (7i+l)r s E S (7;). i = 0, . . ., TZ - 1). Consequently, equalities (2.5)follow 
from equalities (3.14), which proves Theorem 1. 
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4. We consider a conflict-controlled linear system (2.6) with the convex target functlxi 

fs (4. Theorem 2 can be proved by the scheme in /2/. 
We present the proof of Theorem 2. The necessity of conditions (2.5) follows directly 

from Theorem 1. Let us assume that for some positional strategy c;, there exists a system 3f 
measures (b (a, T~+~, Tir s), A C S (Q+~), SE S (Zi), i = 0.. ., n-i) for which relations(2.5) are fulfilled. 
We show that U, solves Problem 1. Let U be any other positional strategy, If.1 -~ ? 1.. T,,, lg. (-. 
lJ I.117 5* I.1 = I* 1.7 To, 1”. CT,, u 1.11 be the motions generated by one and the same control L.[.). where 

5* r.3 To, 5cD. u,, u [.I) is the maximizing motion for strategy u,. Then from (2.5)- 12.7) we obtain 

where u (~~1 = u (t,,, so) and the function rl, (To, S) of (2.7) is specified in terms of the system of 
measures (B (A, T~+~, hi, s)y A C S (Ti+l)v s E 5' (Ti)) defined by strategy (I,. From the latter estimate 
we see that a set D(T~) of nonzero measure ~(.,~,,T~,s~) exists such that the inequality 

(9 (%r S. 1d.A (n) Cc+ IT,] - I [ill), d 0 

is fulfilled for all s.1~~1 ED&) c~(Q). We assume further by induction that the estimate 

(lp (sir S* ITi)).- (ri) (~a Is,1 - z IT,])> < 0 (4.1) 

S* hi1 E D hi)7 v (D CT*), Tir To3 So) > 0 

is valid for instant Zi . Let us show that a motion x,1.. %ZO, U, u I.11 can be found, for which 
estimate (4.1) is preserved at instant TV+, . Indeed, from (2.5)- (2.7) and (4.1) we have 

s <;r* (Ti+j) W (ri+t* s*)'(z* Cri+ll - * tTi+*l)) B Cds*9 Ti+l’ 7i* s* fril) = 
S&c,) 

(‘4 (ri,.4Q~A bi) 6% bil --2 [fJ)> + (‘4’ bi. s*[~il).(~,[~il-u[~il)) < 

xnin 
ucP&) 

@(ri,s* [Til).(u - u Ltil)) G 0 

Therefore, a set D (T*+,) (V (D (T~+~). TV+,, tO,sO)>O) exists such that the inequality 

(rl ('i+l? S* b*+lI)*A (~i+l) (~a ITi+, - 3 IT<+,])) < 0 

is fulfilled for all St [Ti+J = D (p+J * Hence, using (3.2) and the convexity of o(z), we final- 
ly obtain 

<% . (z* WI - = w> B 0 

0 (I* WI) = max u (z w. 70, IO. U.1) d “xF.7 u (z I@, % % w 
ti.1 

which proves Theorem 2. 
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