A NECESSARY OPTIMALITY CONDITION IN A GAME OF ENCOUNTER AT A PRESCRIBED INSTANT*

S.I. TARLINSKII

A necessary condition is derived, which must be satisfied by the positional strategy minimizing the game's value. It is shown that for a linear system and a convex target function this condition is sufficient. 'The paper abuts the researches in /1-4/.

1. We consider a discrete conflict-controlled system described by the equation

$$
\begin{align*}
& x\left[\tau_{i+1}\right]=f\left(\tau_{i}, x\left[\tau_{i}\right]\right)+u+v, x\left[\tau_{0}\right]=x_{0} \tag{1,1}\\
& u \in P\left(\tau_{i}\right), v \in Q\left(\tau_{i}\right)
\end{align*}
$$

Here x is an m-dimensional vector, $\tau_{0}<\tau_{1}<\ldots<\tau_{n}=\Leftrightarrow$ are fixed instants, the function f is continuous together with its partial dexivatives with respect to $x_{j}(j=1, \ldots, m), u$ and v are the players' controls, $P\left(\tau_{i}\right), Q\left(\tau_{i}\right)$ are convex compacta. Let the target function $\sigma(x)$, continuous together with its partial derivatives, be prescribed. Player u must minimize o (x) at instant $\tau_{n}=0$ and player v must maximize it.

The game is formalized as follows. By a positional strategy of its player u we shall mean any function $U=u\left(\tau_{i}, x\right)$ satisfying the inclusion $u\left(\tau_{i}, x\right) \in P\left(\tau_{i}\right)$. Just as in $/ 1,4 /$ any solution of the equation

$$
\begin{aligned}
& x\left[\tau_{i+1}\right]=f\left(\tau_{i}, x\left[\tau_{i}\right]\right)+u\left(\tau_{i}, x\left[\tau_{i}\right]\right)+v\left[\tau_{i}\right] \\
& x\left[\tau_{0}\right]=x_{0}, v\left[\tau_{i}\right] \in Q\left(\tau_{i}\right), i=0, \ldots, n-1
\end{aligned}
$$

is called a polygonal line $x[\cdot]=x\left[\cdot, \tau_{0}, x_{0}, U, v[\cdot]\right]$. A motion $x[\cdot]=x\left[1, \tau_{0}, x_{0}, U\right]$ of system (1.1), generated by strategy U, is any limit of the convergent sequence of polygonal lines $x_{k}[\cdot]=x\left[\cdot, \tau_{0}, x_{0}, U, v_{k}[\cdot] \mid\right.$, i.e.

$$
x\left\{\tau_{i}\right]=\lim x_{k}\left\{\tau_{i}\right\}, k \rightarrow \infty
$$

We formulate the following problem.
Problem 1. Find a strategy U_{0} of the first playex, satisfying the equality

$$
\max _{x[-1} \sigma\left(x\left[0, \tau_{0}, x_{0}, U_{0}\right]\right)=\min _{0} \max _{x[1]} \sigma\left(x\left[\theta, \tau_{0}, x_{0}, U\right]\right)
$$

2. Let us derive the main results. For this purpose we introduce the following definitions. Suppose that some strategy U has been selected. We say that at instant τ_{i} the motion $x[\cdot]=x\left[\cdot, \tau_{0}, x_{0}, U\right]$ has passed into the state $s\left[\tau_{i}\right]=\left\{x\left[\tau_{i}\right], u\left[\tau_{i}\right]\right\}$ if there exists a sequence of polygonal lines $x_{k}[\cdot]=x\left[\cdot, \tau_{3}, x_{0}, U, v_{k}[\cdot]\right]$ converging to this motion and satisfying at instant τ_{i} the equality

$$
u\left[\tau_{i}\right]=\lim u\left(\tau_{i}, x_{k}\left[\tau_{i}\right]\right), k \rightarrow \infty
$$

We shall say that the motion $x[\cdot]=x\left[\cdot, \tau_{0}, x_{0}, U\right]$ passes from state $s\left[\tau_{i}\right]=\left\{x\left[\tau_{i}\right]\right.$, u[$\left.\left.\tau_{i}\right]\right\}$ into state $s\left[\tau_{i+1}\right]=\left\{x\left[\tau_{i+1}\right], u\left[\tau_{i+1}\right]\right\}$ if we can find a sequence of polygonal lines $x_{k}[]=.x\left[., \tau_{0}, x_{0}\right.$, $U, v_{k}[\cdot]$ converging to this motion and satisfying the relations

$$
\left.u\left[\tau_{i}\right]=\lim u\left(\tau_{i}, x_{k} \mid \tau_{i}\right]\right), u\left[\tau_{i+1}\right]=\operatorname{Lim} u\left(\tau_{i+1}, x_{k}\left[\tau_{i+1}\right]\right), k \rightarrow \infty
$$

By $u\left(\tau_{i}, s\right)$ we denote the control corresponding to state $\left\{\tau_{i}, s\right\}=\left\{\tau_{i}, x, u\right\}$. Any motion for which the equality

$$
\begin{equation*}
\rho=\sigma\left(x_{0}[\theta]\right)=\max _{x[]} \sigma\left(x\left[\theta, \tau_{0}, x_{0}, b\right]\right) \tag{2.1}
\end{equation*}
$$

is valid is called the maximizing motion $x_{0}[\cdot]=x_{0}\left[\cdot, \tau_{0}, x_{0}, U\right]$ for strategy U.
Let $S\left(\tau_{i}\right)(i=0, \ldots, n-1)$ be a collection of all states s through which the maximizin? motion (2.1) passes at instant τ_{i}, i.e.

$$
\begin{aligned}
& S\left(\tau_{i}\right)=\left\{s=\{x, u\}, x=x_{0}\left[\tau_{i}, \tau_{0}, x_{0}, U\right]\right. \\
& \left.u=u\left(\tau_{i}, s\right), \quad \sigma\left(x_{0}\left[\vartheta, \tau_{i}, s, U\right]\right)=\rho\right\}, i=0, \ldots, n-1 \\
& S(\vartheta)=W=\left\{w, w=x_{0}\left[\vartheta, \tau_{0}, x_{0}, U\right]\right\}
\end{aligned}
$$

By $S\left(\tau_{i+1}, \tau_{i}, s_{*}\right)$ we denote the set of all states through which the maximizing motion (2.1) passes at instant τ_{i+1} under the condition that this motion passed through state s_{*} at instant τ_{i}. i.e.

$$
\begin{align*}
& S\left(\tau_{i+1}, \tau_{i}, s_{*}\right)=\left\{s \in S\left(\tau_{i+1}\right), s=\left\{x_{0}\left[\tau_{i+1}\right], u\left[\tau_{i+1}\right]\right\},\right. \tag{2.3}\\
& \left.u\left\{\tau_{i+1}\right]=u\left(\tau_{i+1}, s\right), x_{0}\left[\tau_{i+1}\right]=x_{0}\left[\tau_{i+1}, \tau_{i}, s_{*}, U\right]\right\}
\end{align*}
$$

Let $\left\{\beta\left(A, \tau_{i+1}, \tau_{i}, s\right), A \subset S\left(\tau_{i+1}\right), s \in S\left(\tau_{i}\right), i=0, \ldots, n-1\right\}$ be the system of regular prubabilistic Borel measures concentrated on the sets $S\left(\tau_{i+1}, \tau_{i}, s\right)$ from (2.3) and integrable with respect to the $s \in S\left(\tau_{i}\right)$ from (2.2). For this system of measures we set

$$
\begin{align*}
& \psi\left(\tau_{n-1}, s_{*}\right)=\int_{W} \frac{\partial \sigma^{*}}{\partial x}(w) \beta\left(d u, \tau_{n}, \tau_{n-1}, s_{*}\right) \tag{2.4}\\
& \psi\left(\tau_{i}, s_{*}\right)=\int_{S\left(\tau_{i+1}\right)} \frac{\partial f^{*}}{\partial x}\left(\tau_{i+1}, x\right) \psi\left(\tau_{i+1}, s\right) \beta\left(d s, \tau_{i+1}, \tau_{i}, s_{*}\right) \\
& (i=0, \ldots, n-2) \\
& v\left(A, \tau_{i+1}, \tau_{i}, s_{*}\right)=\beta\left(A, \tau_{i+1}, \tau_{i}, s_{*}\right) \\
& v\left(A, \tau_{j}, \tau_{i}, s_{*}\right)=\int_{S\left(\tau_{i+1}\right)} v\left(A, \tau_{j}, \tau_{i+1}, s\right) \beta\left(d s, \tau_{i+1}, \tau_{i}, s_{*}\right) \\
& (j=i+2, \ldots, n-1) \\
& \frac{\partial \sigma}{\partial x}=\left\{\frac{\partial \sigma}{\partial x_{j}}, j=1, \ldots, m\right\}, \quad \frac{\partial f}{\partial x}=\left\{\frac{\partial \tau_{k}}{\partial x_{j}}, \quad k, j=1, \ldots, m\right\}
\end{align*}
$$

(G^{*} is the matrix adjoint to G).
Theorem 1. In order for strategy U to solve Problem l it is necessary that for this strategy there exist a system of measures $\left\{\beta\left(A, \tau_{i+1}, \tau_{i}, s\right), A \subset S\left(\tau_{i+1}\right), s \in S\left(\tau_{i}\right), i=0, \ldots, n-1\right\}$ for which the equalities

$$
\begin{gather*}
\left\langle\psi\left(\tau_{0}, s_{0}\right) \cdot u\left(\tau_{0}, s_{0}\right)\right\rangle=\min _{u \in P\left(\tau_{0}\right)}\left\langle\psi\left(\tau_{0}, s_{0}\right) \cdot u\right\rangle \tag{2.5}\\
\int_{s\left(\tau_{i}\right)}\left\langle\psi\left(\tau_{i}, s\right) \cdot u\left(\tau_{i}, s\right)\right\rangle v\left(d s, \tau_{i}, \tau_{0}, s_{0}\right)=\int_{s\left(\tau_{i}\right)} \min _{u \in P\left(\tau_{i}\right)}\left\langle\psi\left(\tau_{i}, s\right) \cdot u\right\rangle v\left(d s, \tau_{i}, \tau_{0}, s_{0}\right) \quad(i=1, \ldots, n-1)
\end{gather*}
$$

are fulfilled, where $\langle p \cdot q\rangle$ is the scalar product of p and $q,\left\{\tau_{i}, s_{*}\right\}=\left\{\tau_{i}, x_{*}, u_{*}\right\}, u_{*}=u\left(\tau_{i}, s_{*}\right)$, the quantities $\psi\left(\tau_{i}, s\right), v\left(\cdot, \tau_{i}, \tau_{0}, s_{0}\right)$ are prescribed in accord with (2.4).

We remark that the $\psi\left(\tau_{i}, s\right)$ in (2.4) are analogous to the adjoint functions from $/ 2,5$. Let us consider a linear conflict-controlled system

$$
\begin{equation*}
x\left[\tau_{i+1}\right]=A\left(\tau_{i}\right) x\left[\tau_{i}\right]+u+v, x\left[\tau_{0}\right]=x_{0} \tag{2.6}
\end{equation*}
$$

for which the functions $\psi\left(\tau_{i}, s\right)$ are given by the formulas

$$
\begin{align*}
& \psi\left(\tau_{n-1}, s_{*}\right)=\int_{W} \frac{\partial \sigma^{*}}{\partial x}(w) \beta\left(d w, \tau_{n}, \tau_{n-1}, s_{*}\right) \tag{2.7}\\
& \psi\left(\tau_{i}, s_{*}\right)=A^{*}\left(\tau_{i+1}\right) \int_{S\left(\tau_{i+1}\right)} \psi\left(\tau_{i+1}, s\right) \beta\left(d s, \tau_{i+1}, \tau_{i}, s_{*}\right)(i=0, \ldots, n-2)
\end{align*}
$$

Theorem 2. Let the discrete motions be described by the linear Eq. (2.6) and let the target function $\sigma(x)$ be convex. Then, in order for strategy U to solve problem 1 it is necessary and sufficient that conditions (2.5), wherein the functions $\psi\left(\tau_{i}, s\right)$ have been defined by relations (2.7), be fulfilled for some system of measures $\left\{\beta\left(A, \tau_{i+1}, \tau_{i}, s\right), A \subset S\left(\tau_{i+1}\right), s \in S\left(\tau_{i}\right)\right\}$.
3. We derive auxiliary statements which will aid the proof of Theorem 1 . Suppose that some strategy of the first player has been selected and that positive numbers α and ε have been prescribed. By $\left\{x_{a}[\cdot]=x_{\alpha}\left[\cdot, \tau_{0}, x_{0}, U\right]\right\}$ we denote the collection of all α-maximizing motions for strategy U, i.e.

$$
\begin{equation*}
\sigma\left(x_{\alpha}[\vartheta]\right) \geqslant \rho-\alpha, \rho=\max _{x[\cdot]} \sigma\left(x\left[\vartheta, \tau_{0}, x_{0}, U\right]\right) \tag{3.1}
\end{equation*}
$$

Let $S_{\alpha}\left(\tau_{i}\right)$ be the set of all possible states $s=\{x, u\}$ through which the α-maximizing motions (3.1) pass at instant τ_{i}, where

$$
S_{\alpha}\left(\tau_{n}\right)=W_{\alpha}=\left\{w, u=x_{\alpha}\left[\theta, \tau_{0}, x_{0}, U\right], \sigma(w) \geqslant \rho-\alpha\right\} ; S_{\alpha}\left(\tau_{i+1}, \tau_{i}, s_{*}\right)
$$

is the set of all states through which the α-maximizing motions pass at instant τ_{i+1} under the condition that these motions passed through state s_{*} at instant $\tau_{i} ;\left(\beta_{\alpha}\left(A, \tau_{i+1}, \tau_{i}, s_{*}\right), A \subset\right.$ $\left.S_{a}\left(\tau_{i+1}\right), s \in S\left(\tau_{i}\right), i=0, \ldots, n-1\right\}$ is a system of regular probabilistic Borel measures concentrated on $S_{a}\left(\tau_{i+1}, \tau_{i}, s_{*}\right)$ and integrable with respect to $s_{*} \in S\left(\tau_{i}\right)$.

We set

$$
\begin{align*}
& \psi_{\beta}\left(\tau_{n-1}, s_{*}\right)=\int_{W_{\alpha}} \frac{\partial \sigma^{*}}{\partial x}(w) \beta_{\alpha}\left(d w, \tau_{n}, \tau_{n-1}, s_{*}\right) \tag{3.2}\\
& \psi_{\beta}\left(\tau_{i}, s_{*}\right)=\int_{s_{\alpha}\left(\tau_{i+1}\right)} \frac{\partial f^{*}}{\partial x}\left(\tau_{i+1}, x\right) \psi_{\beta}\left(\tau_{i+1}, s\right) \beta_{\alpha}\left(d s, \tau_{i+1}, \tau_{i}, s_{*}\right) \\
& (i=0, \ldots, n-2) \\
& v_{\beta}\left(A, \tau_{i+1}, \tau_{i}, s_{*}\right)=\beta_{\alpha}\left(A, \tau_{i+1}, \tau_{i}, s_{*}\right) \\
& v_{\beta}\left(A, \tau_{j}, \tau_{i}, s_{*}\right)=\int_{S_{\alpha}\left(\tau_{i+1}\right)} v_{\beta}\left(A, \tau_{j} \tau_{i+1}, s\right) \beta_{\alpha}\left(d s, \tau_{i+1}, \tau_{i}, s_{*}\right) \\
& (j=i+2, \ldots, n-1) \\
& \varphi_{\beta}\left(\tau_{i}, s_{*}, z, u, \alpha, \varepsilon\right)=\left\langle\left(\frac{\partial f^{*}}{\partial x}\left(\tau_{i}, x_{*}\right) \psi_{\beta}\left(\tau_{i}, s_{*}\right)\right) \cdot\left(z-x_{*}\right)\right\rangle+ \tag{3.3}\\
& \varepsilon\left\langle\psi_{\beta}\left\{\tau_{i}, s_{*}\right) \cdot\left(u-u\left(\tau_{i}, s_{*}\right)\right)\right\rangle+ \\
& \varepsilon \sum_{i=i+1}^{n-1} \int_{s_{\alpha}\left(\tau_{l}\right)} \min _{u \equiv P\left(\tau_{i}\right)}\left\langle\psi_{\beta}\left(\tau_{l}, s\right) \cdot\left(u-u\left(\tau_{i}, s\right)\right)\right\rangle v_{\beta}\left(d s, \tau_{l}, \tau_{i}, s_{*}\right) \\
& K=\max _{i, x, u}^{\max }\left\{\left|\frac{\partial f}{\partial x}\right|+1.2|u|\right\}, \quad M=\max _{x}\left|\frac{\partial J}{\partial x}\right| \tag{3.4}
\end{align*}
$$

Here $\mid p$ is the Euclidean norm of $p, x \in G$, where G is a compactum in $R^{(m)}$ containing all possible positions $x=x[\cdot]$ which result from (1.1) when $u \in P\left(\tau_{i}\right), v \in Q\left(\tau_{i}\right)(i=0, \ldots, n-1)$. By analogy with the material in $/ 1,4 /$ we define a strategy $U_{\alpha, \varepsilon}=u\left(\tau_{i}, s\left[\tau_{i}\right], z\right)$ with leader

$$
x\left[\cdot, \tau_{0}, x_{0}, U\right], s\left[\tau_{i}\right]=\left\{x\left[\tau_{i}\right], u\left[\tau_{i}\right]\right\}
$$

We say that the strategy $U_{\alpha, \varepsilon}=u\left(\tau_{i}, s\left\lceil\tau_{i}\right\rceil, z\right)$ is a corrected strategy with leader $x\left[\cdot, \tau_{0}, x_{0}\right.$, U J. $s\left[\tau_{i}\right]=\left\{x\left[\tau_{i}\right], u\left[\tau_{i}\right]\right\}$ if this strategy is specified by the following rule; for $s\left[\tau_{i}\right] \in S_{\alpha}\left(\tau_{i}\right)$ and $\left|x\left[\tau_{i}\right]-z\right| \leqslant \varepsilon K^{i}$ we set

$$
\begin{equation*}
u\left(\tau_{i}, s\left[\tau_{i}\right], z\right)=(1-\varepsilon) u\left(\tau_{i}, s\left[\tau_{i}\right]\right)+\varepsilon u^{*}\left(\tau_{i}, s\left[\tau_{i}\right], z\right) \tag{3.5}
\end{equation*}
$$

Here $u^{*}=u^{*}\left(\tau_{i}, s\left[\tau_{i}\right], z\right)$ is any control satisfying the relation

$$
\begin{gather*}
\max _{\beta} \varphi_{\beta}\left(\tau_{i}, s\left[\tau_{i}\right], z, u^{*}, \alpha, \varepsilon\right)=\min _{u \equiv P\left(\tau_{i}\right)} \max _{\beta} \varphi_{\beta}\left(\tau_{i}, s\left[\tau_{i}\right], z, u, \alpha, \varepsilon\right)= \tag{3.6}\\
\max _{\beta \in P\left(\tau_{i}\right)} \min _{u \beta}\left(\tau_{i}, s\left[\tau_{i}\right], z, u, \alpha, \varepsilon\right)=d\left(\tau_{i}, s\left[\tau_{i}\right], z, \alpha, \varepsilon\right)
\end{gather*}
$$

where $\beta=\left\{\beta_{\alpha}\left(\cdot, \tau_{1+1}, \tau_{i}, s\right), l=i, \ldots, n-1\right\}$ while the function $\varphi_{\beta}\left(\tau_{i}, s, z, u, \alpha, \varepsilon\right)$ is defined in accord with (3.3), (3.2). If $s\left[\tau_{i}\right]$ does not belong to $S_{\alpha}\left(\tau_{i}\right)$ or if the inequality $\mid x\left[\tau_{i}\right]$ $z \mid>\varepsilon K^{i}$ is valid, then we set

$$
\begin{equation*}
u\left(\tau_{i}, s\left[\tau_{i}\right], z\right)=u\left(\tau_{i}, s\left[\tau_{i}\right]\right) \tag{3.7}
\end{equation*}
$$

We note that by virtue of the continuity of $\partial \sigma / \partial x, \partial f / \partial x$ the compactness of sets $S_{a}\left(\tau_{i+1}, \tau_{i}, s\right)$, as well as of (3.2) and (3.3) it follows that the maximum in (3.6) is achieved in the class of regular Borel measures $\beta=\left\{\beta_{\alpha}\left(A, \tau_{l+1}, \tau_{l}, s\right), A \subset S_{\alpha}\left(\tau_{l+1}\right), s \in S_{\alpha}\left(\tau_{l}\right), l=i, \ldots, n-1\right\}$ integrable with respect to $s \in S_{u}\left(\tau_{l}\right)$. The operations of minimum and maximum in (3.6) can permute since $P\left(\tau_{i}\right)$ is a convex compactum, the function $\varphi_{\beta}\left(\tau_{i}, s, z, u, \alpha, \varepsilon\right)$ is linear in u, and $\beta_{\alpha}(\cdot$, $\left.\tau_{i+1}, \tau_{i}, s\right) / 6 /$. In addition, the motions $z[\cdot]=z\left[\cdot, \tau_{i}, s\left[\tau_{i}\right], z, U_{a, e}, v[\cdot]\right]$ are connnected with the motions of the leader $x[\cdot]=x\left[\cdot, \tau_{i}, s\left[\tau_{i}\right], U, v[\cdot]\right]=x\left[\cdot, \tau_{0}, x_{0}, U, v[\cdot]\right]$ by the equalities

$$
\begin{aligned}
& z\left[\tau_{i+1}\right]=f\left(\tau_{i}, z\left[\tau_{i}\right]\right)+(1-\varepsilon) u\left(\tau_{i}, s\left[\tau_{i}\right]\right)+ \\
& \varepsilon u^{*}\left(\tau_{i}, s\left[\tau_{i}\right], z\left[\tau_{i}\right]\right)+v\left[\tau_{i}\right] \\
& x\left[\tau_{i+1}\right]=f\left(\tau_{i}, x\left[\tau_{i}\right]\right)+u\left(\tau_{i}, s\left[\tau_{i}\right]\right)+v\left[\tau_{i}\right]
\end{aligned}
$$

if

$$
s\left[\tau_{i}\right]=\left\{x\left[\tau_{i}\right], u\left[\tau_{i}\right]\right\} \in S_{\alpha}\left(\tau_{i}\right),\left|x\left[\tau_{i}\right]-z\left[\tau_{i}\right]\right| \leqslant \varepsilon K^{i}
$$

$$
z\left[\tau_{i+1}\right]=f\left(\tau_{i}, z\left[\tau_{i}\right]\right)+u\left(\tau_{i}, s\left[\tau_{i}\right]\right)+v\left[\tau_{i}\right]
$$

$$
x\left[\tau_{i+1}\right]=f\left(\tau_{i}, x\left[\tau_{i}\right]\right)+u\left(\tau_{i}, s\left[\tau_{i}\right]\right)+v\left[\tau_{i}\right]
$$

$s\left[\tau_{i}\right] \notin S_{\alpha}\left(\tau_{i}\right)$ or $\left|x\left[\tau_{i}\right]-z\left[\tau_{i}\right]\right|>\varepsilon K^{i}$

We observe that for the prescribed states $s\left[\tau_{i}\right]$ through which the motion $x\left[., \tau_{0}, x_{0}, U\right]$ passes, this motion is completely determined by the equations $v=v\left[\tau_{i}\right] \in Q\left(\tau_{i}\right)(i=0, \ldots n-1)$.

Lemma 1. Suppose that the motion $x[\cdot]=x\left[\cdot, \tau_{0}, x_{0}, U\right]$ of (1.1) passed into the state $s\left[\tau_{i}\right] \in S_{a}\left(\tau_{i}\right)$ at instant τ_{i}. Then for any positions z and realizations $v=v[$.$] such that$ $\left|x\left[\tau_{i}\right]-z\right| \leqslant \varepsilon K^{i}, x[\theta] \in W_{\alpha}$, the strategy $U_{\alpha, \varepsilon}$ of (3.5) and (3.6) guarantees the estimate

$$
\begin{equation*}
\sigma(z[\vartheta]) \leqslant \rho+d\left(\tau_{i}, s\left[\tau_{i}\right], z, \alpha, \varepsilon\right)+o(\varepsilon) \tag{3.10}
\end{equation*}
$$

where $z[\cdot]=z\left[\cdot, \boldsymbol{\tau}_{i}, z, s\left[\boldsymbol{\tau}_{i}\right], U_{\alpha, \varepsilon}, v[\cdot]\right]$ is the motion in (3.8) matched with the motion of the leader $x\left[\cdot, \tau_{i}, s\left[\tau_{i}\right], U, v[\cdot]\right], o(\varepsilon)$ is a quantity of a higher order of smallness in comparison with $\varepsilon, \rho, d\left(\tau_{i}, s, z, \alpha, \varepsilon\right)$ are defined in accord with (3.1), (3.6).

Proof. At instant τ_{n-1}, for $s\left[\tau_{n-1}\right] \in S_{\alpha}\left(\tau_{n-1}\right),\left|x\left[\tau_{n-1}\right]-z\right| \leqslant \varepsilon K^{n-1}, \quad x[\vartheta] \in W_{\alpha}$, from (3.5), (3.6), (3.8), (3.1) we have

$$
\begin{aligned}
& \sigma(z[\theta]) \leqslant \rho+\max _{x[\cdot]}\left[<\frac{\partial \sigma^{*}}{\partial x}(x[\theta]) \cdot\left(\frac{\partial f}{\partial x}\left(\tau_{n-1}, x\left[\tau_{n-1}\right]\right)\left(z-x\left[\tau_{n-1}\right]\right)\right)>+\right. \\
& \left.\quad \varepsilon<\frac{\partial \sigma^{*}}{\partial x}(x[\theta]) \cdot\left(u^{*}\left[\tau_{n-1}\right]-u\left[\tau_{n-1}\right]\right)>\right]+o(\varepsilon) \\
& u *\left[\tau_{n-1}\right]=u^{*}\left(\tau_{n-1}, s\left[\tau_{n-1}\right], z\right), u\left[\tau_{n-1}\right]=u\left(\tau_{n-1}, s\left[\tau_{n-1}\right]\right)
\end{aligned}
$$

Hence from (3.2), (3.3), (3.6) we obtain

$$
\begin{aligned}
& \sigma(z[\theta]) \leqslant \rho+\max _{B}\left[<\left(\frac{\partial f^{*}}{\partial x}\left(\tau_{n-1}, x\left[\tau_{n-1}\right]\right) \psi\left(\tau_{n-1}, s\left[\tau_{n-1}\right]\right)\right) \times\left(z-x\left[\tau_{n-1}\right]\right)>+\right. \\
& \left.\quad \varepsilon<\psi\left(\tau_{n-1}, s\left[\tau_{n-1}\right]\right) \cdot\left(u *\left[\tau_{n-1}\right]-u\left[\tau_{n-1}\right]\right)>\right]+o(\varepsilon)=\rho+d\left(\tau_{n-1}, s\left[\tau_{n-1}\right], z, \alpha, \varepsilon\right)+o(\varepsilon)
\end{aligned}
$$

Thus, inequality (3.10) has been proved for instant τ_{n-1}. We assume that (3.10) holds for $i=l+1$ and we obtain the required assertion for $i=l$. As a matter of fact, from (3.8), (3.5) it follows that if position z and state $s\left[\tau_{l}\right] \in S_{a}\left(\tau_{l}\right)$ are connected by the relation $\left.|x| \tau_{l}\right]-z \mid \leqslant \varepsilon K^{l}$, then the estimate $\left|x\left[\tau_{l+1}\right]-z\left[\tau_{l+1}\right]\right| \leqslant \varepsilon K^{i+1}$ will be fulfilled for the motions $z\left[\tau_{l+1}\right]=z\left[\tau_{l+1}, \tau_{l}, z, s\left[\tau_{l}\right], U_{\alpha, \varepsilon}, v\lceil\cdot \|], x\left[\tau_{l+1}\right]=x\left[\tau_{l+1}, \tau_{l}, s\left[\tau_{l}\right], U, v[\cdot] \mid\right.\right.$ from (3.8). Then, according to (3.10), $(3.2),(3.3),(3.6),(3.8),(3.1)$ we obtain

$$
\begin{aligned}
& \sigma(z[\vartheta]) \leqslant \rho+\max _{\beta^{\prime} \beta}\left[\int _ { S _ { \alpha } (\tau _ { l }) } \left\{<\left(\frac{\partial f^{*}}{\partial x}\left(\tau_{l+1}, x\right) \psi_{\beta}\left(\tau_{l+1}, s\right)\right) \times\right.\right. \\
& \quad\left(\frac{\partial f}{\partial x}\left(\tau_{l}, x\left[\tau_{l}\right]\right)\left(z-x\left[\tau_{l}\right]+\varepsilon\left(u *\left[\tau_{l}\right]-u\left[\tau_{l}\right]\right)\right)\right)>+ \\
& \varepsilon \min _{u \in P\left(\tau_{l+1}\right)}<\psi_{\beta}\left(\tau_{l+1}, s\right) \cdot\left(u-u\left(\tau_{l+1}, s\right)\right)>+ \\
& \quad \varepsilon \sum_{k=l+2}^{n-1} \int_{S_{\alpha}\left(\tau_{k}\right)} \min _{u \in P\left(\tau_{k}\right)}<\psi\left(\tau_{k}, s_{*}\right) \cdot\left(u-u\left(\tau_{k}, s_{*}\right)\right)> \\
& \left.\left.v_{\beta}\left(d s_{*}, \tau_{k}, \tau_{l+1}, s\right)\right\} \beta_{\alpha}^{\prime}\left(d s, \tau_{l+1}, \tau_{l}, s\left[\tau_{l}\right]\right)\right]+o(\varepsilon)= \\
& \rho+\max _{\beta^{\prime} \beta} \min _{u \in P\left(\tau_{l}\right)} \varphi_{\beta^{\prime} \beta}\left(\tau_{l}, s\left[\tau_{l}\right], z, u, \alpha, \varepsilon\right)+o(\varepsilon)= \\
& \rho-d\left(\tau_{l}, s\left[\tau_{l}, z_{,}, \alpha, \varepsilon\right)+o(\varepsilon)\right. \\
& \left(\beta^{\prime}=\beta_{\alpha}^{\prime}\left(\cdot, \tau_{l+1}, \tau_{l}, s\right), \quad \beta=\left\{\beta_{\alpha}\left(\cdot, \tau_{j+1}, \tau_{j}, s\right), \quad j=l+1, \ldots, n-1\right\}\right. \\
& \left.\beta^{\prime} \beta=\left\{\beta_{\alpha}\left(\cdot, \tau_{j+1}, \tau_{j}, s\right), \quad j=l, \ldots, n-1\right\}\right)
\end{aligned}
$$

The latter relation completes the Lemma's proof.
The next lemma follows immediately from Lemma 1 as well as from (3.7) and (3.9).
Lemma 2. One of the estimates: either

$$
\begin{equation*}
\sigma(z[\vartheta]) \leqslant \rho+d\left(\tau_{0}, s_{0}, x_{0}, \alpha, \varepsilon\right)+o(\varepsilon) \tag{3.11}
\end{equation*}
$$

or

$$
\sigma(z[\vartheta]) \leqslant \rho-\alpha+\varepsilon M K^{n}
$$

is fulfilled for any motion $z[\cdot]=z\left[\cdot, \tau_{0}, x_{0}, U_{\alpha, \varepsilon}, v[\cdot]\right]$ of (3.8), (3.9), generated by an $\alpha, \varepsilon-$ corrected strategy with leader. Here $s_{0}=\left\{x_{0}, u_{0}\right\}, u_{0}=u\left(\tau_{0}, x_{0}\right)$ and the quantities $d\left(\tau_{i}, s, x, \alpha, \varepsilon\right)$, $K . M$ are prescribed in accord with (3.6), (3.4).

Let $Z\left(\tau_{i}, \alpha, \varepsilon\right)$ be the set of all positions z for each of which we can find a motion $x[\cdot]_{i}=x\left[\cdot, \tau_{0}, x_{0}, U\right]$ satisfying the estimate $\left|x\left[\tau_{i}\right]-z\right| \leqslant \varepsilon K$. We introduce the set $Z_{1}\left(\tau_{i}, \alpha\right.$, $\varepsilon)$; here $\bar{z} \doteq Z_{1}\left(\tau_{i}, \alpha, \varepsilon\right)$ if for any motion $x[\cdot]=x\left[\cdot, \tau_{0}, x_{0}, U\right]$ satisfying the inequality $\mid x\left[\tau_{i}\right]$ $-z \mid \leqslant \varepsilon K_{i} \quad$ and any state $s\left\{\tau_{i}\right]=\left\{x\left[\tau_{i}\right], u\left[\tau_{i}\right]\right\}$ through which this motion passed at instant τ_{i}, the inclusion $s\left[\tau_{i}\right] \in S_{\alpha}\left(\tau_{i}\right)$ is valid. Now we set

$$
Z_{2}\left(\tau_{i}, \alpha, \varepsilon\right)=Z\left(\tau_{i}, \alpha, \varepsilon\right) \backslash Z_{1}\left(\tau_{i}, \alpha, \varepsilon\right), \quad Z_{3}\left(\tau_{i}, \alpha, \varepsilon\right)=R^{(m)} \backslash Z\left(\tau_{i}, \alpha, \varepsilon\right)
$$

Here $A \backslash B$ is the difference of sets A and $B, R^{(m)}$ is an m-dimensional space. An $\alpha, \varepsilon-$ corrected positional strategy $U_{\alpha, \varepsilon}=u_{\alpha, \varepsilon}\left(\tau_{i}, z\right)$ is the function determined by the conditions

$$
\begin{align*}
& u_{\alpha, \varepsilon}\left(\tau_{i}, z\right)=(1-\varepsilon) u\left(\tau_{i}, s_{*}\right)+\varepsilon u^{*}\left(\tau_{i}, s_{*}, z\right) \tag{3.12}\\
& \varphi\left(\tau_{i}, s_{*}, z, u^{*}, \alpha, \varepsilon\right)=\min d\left(\tau_{i}, s, z, \alpha, \varepsilon\right) \\
& z \in Z_{1}\left(\tau_{i}, \alpha, \varepsilon\right), s=\{x, u\}, s_{*}=\left\{x_{*}, u_{*}\right\},\left|x_{*}-z\right| \leqslant \varepsilon K^{i}, \\
& |x-z| \leqslant \varepsilon K^{i}
\end{align*}
$$

(the functions $\varphi\left(\tau_{i}, s, z, u, \alpha, \varepsilon\right), d\left(\tau_{i}, s, z, \alpha, \varepsilon\right)$ are defined by relations (3.3), (3.6))

$$
\begin{align*}
& u_{\alpha, \varepsilon}\left(\tau_{i}, z\right)=u\left(\tau_{i}, s_{*}\right) \tag{3.13}\\
& s_{*}=\left\{x_{*}, u_{*}\right\} \notin S_{\alpha}\left(\tau_{i}\right), \quad z \in Z_{2}\left(\tau_{i}, \alpha, \varepsilon\right), \quad\left|x_{*}-z\right| \leqslant \varepsilon K^{i} \\
& u_{\alpha, \varepsilon}\left(\tau_{i}, z\right)=u\left(\tau_{i}, z\right), z \in Z_{3}\left(\tau_{i}, \alpha, \varepsilon\right)
\end{align*}
$$

Comparing (3.12) and (3.13) with (3.6) and (3.7) from Lemmas 1 and 2, we obtain the following result.

Lemma 3. An α, ε-corrected positional strategy $U_{\alpha, \varepsilon}$ guarantees one of estimates (3.11) for any motion $z[\cdot]=z\left[\cdot, \tau_{0}, x_{0}, U_{\alpha, \varepsilon}\right]$.

Hence follows the next statement.
Lemma 4. In order for strategy U to solve Problem 1 it is necessary that for any $\alpha>0$ a system of measures $\beta=\left\{\beta_{\alpha}\left(A, \tau_{i+1}, \tau_{i}, s\right), A \subset S_{\alpha}\left(\tau_{i+1}\right), s \in S_{\alpha}\left(\tau_{i}\right)(i=0, \ldots, n-1)\right\}$ be found satisfying the conditions

$$
\begin{align*}
& \left\langle\psi_{\beta}\left(\tau_{0}, s_{0}\right) \cdot u\left(\tau_{0}, s_{0}\right)\right\rangle=\min _{u \in P\left(\tau_{0}\right)}\left\langle\psi_{\beta}\left(\tau_{0}, s_{0}\right) \cdot u\right\rangle \tag{3.14}\\
& \int_{s_{\alpha}\left(\tau_{i}\right)}\left\langle\psi_{\beta}\left(\tau_{i}, s\right) \cdot u\left(\tau_{i}, s\right)\right\rangle v_{\beta}\left(d s, \tau_{i}, \tau_{0}, s_{0}\right)= \\
& \quad \int_{s_{\alpha}\left(\tau_{i}\right)} \min _{u \in P\left(\tau_{i}\right)}\left\langle\psi_{\beta}\left(\tau_{i}, s\right) \cdot u\right\rangle v_{\beta}\left(d s, \tau_{i}, \tau_{0}, s_{0}\right) \quad(i=1, \ldots, n-1)
\end{align*}
$$

Indeed, suppose that relations (3.14) are not fulfilled for some α. Then we can find $\varepsilon=\varepsilon(\alpha)$ such that for the positional strategy $U_{\alpha, \varepsilon}$ of (3.12), (3.13) we obtain, in accordance wi.th Lemma 3.

$$
\sigma\left(z\left[\vartheta, \tau_{0}, x_{0}, U_{\alpha, e} \mid\right)<\rho=\max _{\left.x_{[\cdot]}\right]} \sigma\left(x \mid \theta, \tau_{0}, x_{0}, U\right]\right)
$$

where $z\left[\cdot, \tau_{0}, x_{0}, \tau_{\alpha, \varepsilon}\right]$ is any motion generated by strategy $U_{\alpha . \varepsilon}$. Thus, strategy U is not a solution of Problem 1, which proves Lemma 4.

We now complete the proof of Theorem 1. We set $\alpha=\alpha(r)=1 / r(r=1,2, \ldots)$. By Lemma 4 there exists a sequence of measures $\left\{\beta_{\alpha}\left(A, \tau_{i+1}, \tau_{i}, s\right), A \subset S_{\alpha}\left(\tau_{l+1}\right), s \in S_{\alpha}\left(\tau_{i}\right), i=0, \ldots, n-1\right\}, \alpha=$ $1 / r$, satisfying relations (3.14). From this sequence we can pick out a subsequence of measure $\left\{\beta_{\alpha}\left(A, \tau_{i+1} \cdot \tau_{i}, s\right)\right\}$, which, on the strength of the inclusions $S\left(\tau_{i}\right) \subset S_{\alpha}\left(\tau_{i}\right)$, will weakly* converge to some system of measures $\left\{\beta\left(A, \tau_{i+1}, \tau_{i}, s\right), A \subset S\left(\tau_{i+1}\right), s \in S\left(\tau_{i}\right)\right\}$, concentrated on the sets $S\left(\tau_{i+1}, \tau_{i}, s\right), s \in S\left(\tau_{i}\right)$ of (2.2), (2.3). Here the functions $\psi_{\beta}\left(\tau_{i}, s\right), v_{\beta}\left(\cdot, \tau_{i}, \tau_{0}, s_{0}\right)$ of (3.2) will converge to $\psi\left(\tau_{i}, s\right), v\left(\cdot, \tau_{i}, \tau_{0}, s_{0}\right)$ of (2.4), which are defined by the system of measures $\left\{\beta\left(A, \tau_{i+1}, \tau_{i}, s\right), A \subset S\left(\tau_{i+1}\right), s \in S\left(\tau_{i}\right), i=0, \ldots, n-1\right\}$. Consequently, equalities (2.5) follow from equalities (3.14), which proves Theorem 1.
4. We consider a conflict-controlled linear system (2.6) with the convex target function $\sigma(x)$. Theorem 2 can be proved by the scheme in $/ 2 /$.

We present the proof of Theorem 2. The necessity of conditions (2.5) follows directly from Theorem 1. Let us assume that for some positional strategy u, there exists a system of measures $\left\{\beta\left(A, \tau_{i+1}, \tau_{i}, s\right), A \subset S\left(\tau_{i+1}\right), s \in S\left(\tau_{i}\right), i=0 \ldots, n-1\right\}$ for which relations (2.5) are fulfilled. We show that U_{*} solves Problem l. Let U be any other positional strategy, $x[\cdot]=x \mid \cdot, \tau_{0}, x_{g}$. ℓ. $v[\cdot]], x_{*}[\cdot]=x_{*}\left[\cdot, \tau_{0}, x_{0}, U_{*}, v[\cdot] \mid\right.$ be the motions generated by one and the same control $v[\cdot]$, where $x_{*}\left[\cdot, \tau_{0}, x_{0}, U_{*}, v[\cdot \mid]\right.$ is the maximizing motion for strategy U_{*}. Then from (2.3)-(2.7) we obtain

$$
\begin{aligned}
& \int_{s\left(\tau_{1}\right)}<A^{*}\left(\tau_{1}\right) \psi\left(\tau_{1}, s_{*}\right) \cdot\left(x_{*}\left[\tau_{1}\right]-x\left[\tau_{1}\right]\right)>\beta\left(d s_{*}, \tau_{1}, \tau_{0}, s_{0}\right)= \\
& \left\langle\psi\left(\tau_{0}, s_{0}\right) \cdot\left(u_{*}\left[\tau_{0}\right]-u\left[\tau_{0}\right]\right)\right\rangle=\min _{u \in P\left(\tau_{0}\right)}\left\langle\Psi\left(\tau_{0}, s_{0}\right) \cdot\left(u-u\left[\tau_{0}\right]\right)\right\rangle \leqslant 0
\end{aligned}
$$

where $u\left[\tau_{0}\right]=u\left(\tau_{0}, s_{0}\right)$ and the function $\psi\left(\tau_{i}, s\right)$ of (2.7) is specified in terms of the system of measures $\left\{\beta\left(A, \tau_{i+1}, \tau_{i}, s\right), A \subset S\left(\tau_{i+1}\right), s \in S\left(\tau_{i}\right)\right\}$ defined by strategy U_{*}. From the latter estimate we see that a set $D\left(\tau_{1}\right)$ of nonzero measure $\beta\left(\cdot, \tau_{1}, \tau_{0}, s_{0}\right)$ exists such that the inequality

$$
\left\langle\psi\left(\tau_{1}, s_{*} \mid \tau_{1}\right]\right) \cdot A\left(\tau_{1}\right)\left(x_{*}\left[\tau_{1}\right]-x\left[\tau_{1} \mid\right)\right\rangle \leqslant 0
$$

is fulfilled for all $s_{*}\left[\tau_{1}\right] \in D\left(\tau_{1}\right) \subset S\left(\tau_{1}\right)$. We assume further by induction that the estimate

$$
\begin{align*}
& \left\langle\psi \left(\tau_{i}, s_{*}\left(\tau_{i} \mid\right) \cdot A\left(\tau_{i}\right)\left(x_{*}\left[\tau_{i}\right]-x\left[\tau_{i}\right]\right) \leqslant 0\right.\right. \tag{4.1}\\
& s_{*}\left[\boldsymbol{\tau}_{i}\right] \in D\left(\tau_{i}\right), v\left(D\left(\tau_{i}\right), \tau_{i}, \tau_{0}, s_{0}\right)>0
\end{align*}
$$

is valid for instant τ_{i}. Let us show that a motion $x_{*}\left[\cdot, \tau_{0}, x_{0}, U, v[\cdot]\right]$ can be found, for which estimate (4.1) is preserved at instant t_{i+1}. Indeed, from (2.5)- (2.7) and (4.1) we have

$$
\begin{aligned}
& \int_{S\left(\tau_{i+1}\right)}\left\langle A^{*}\left(\tau_{i+1}\right) \psi\left(\tau_{i+1}, s_{*}\right) \cdot\left(x_{*}\left[\tau_{i+1}\right]-x\left[\tau_{i+1}\right]\right)\right\rangle \beta\left(d s_{*}, \tau_{i+1}, \tau_{i}, s_{*}\left[\tau_{i}\right]\right)= \\
& \left\langle\psi\left(\tau_{i}, * *\left[\tau_{i}\right]\right) \cdot A\left(\tau_{i}\right)\left(x_{*}\left[\tau_{i}\right]-x\left[\tau_{i}\right]\right)\right\rangle+\left\langle\psi\left(\tau_{i}, s_{*}\left[\tau_{i}\right]\right) \cdot\left(u_{*}\left[\tau_{i}\right]-u\left[\tau_{i}\right]\right\rangle \leqslant \leqslant\right. \\
& \min _{u \cong P\left(\tau_{i}\right)}\left\langle\psi\left(\tau_{i}, s *\left[\tau_{i}\right]\right) \cdot\left(u-u\left(\tau_{i}\right]\right\rangle \leqslant 0\right.
\end{aligned}
$$

Therefore, a set $D\left(\tau_{i+1}\right)\left(v\left(D\left(\tau_{i+1}\right), \tau_{i+1}, \tau_{0}, s_{0}\right)>0\right)$ exists such that the inequality

$$
\left\langle\psi\left(\tau_{i+1}, s_{*}\left[\tau_{i+1}\right]\right) \cdot A\left(\tau_{i+1}\right)\left(x_{*}\left[\tau_{i+1}\right]-x\left[\tau_{i+1}\right]\right)\right\rangle \leqslant 0
$$

is fulfilled for all $s_{*}\left[\tau_{i+1}\right] \in D\left(\tau_{i+1}\right)$. Hence, using (3.2) and the convexity of $\sigma(x)$, we finally obtain

$$
\begin{aligned}
& \left\langle\frac{\partial \sigma_{*}}{\partial x} \cdot\left(x_{*}[\theta]-x[\theta]\right)\right\rangle \leqslant 0 \\
& \sigma\left(x_{*}[\theta]\right)=\max _{x[\cdot]} \sigma\left(x\left[\theta, \tau_{0}, x_{0}, U_{*}\right]\right) \leqslant \max _{x[\cdot]} \sigma\left(x\left[\theta, \tau_{0}, x_{0}, U\right]\right)
\end{aligned}
$$

which proves Theorem 2.

REFERENCES

1. KRASOVSKII N.N. and SUBBOTIN A.I., Positional Differential Games. Moscow, NAUKA, 1974.
2. PONTRIAGIN L.S., BOLTIANSKII V.G., GAMKRELIDZE R.V. and MISHCHENKO E.F., The Mathematical

Theory of Optimal Processes. English translation: Pergamon Press, Book No. 10176, 1964.
3. PONTRIAGIN L.S., On linear differential games, P.I. Dokl. Akad. Nauk SSSR, Vol. 174, No.6, 1967.
4. SUBBOTIN A.I. and CHENTSOV A.G., Security Optimization in Control Problems. Moscow, NAUKA, 1981.
5. BOLTIANSKII V.G., Optimal Control of Discrete Systems. Moscow, NAUKA, 1973.
6. Infinite Antagonistic Games. Moscow, FIZMATGIZ, 1963.

