A NECESSARY OPTIMALITY CONDITION IN A GAME OF ENCOUNTER AT A PRESCRIBED INSTANT*

S.I. TARLINSKII

A necessary condition is derived, which must be satisfied by the positional strategy minimizing the game's value. It is shown that for a linear system and a convex target function this condition is sufficient. The paper abuts the researches in /1-4/.

1. We consider a discrete conflict-controlled system described by the equation

$$\begin{aligned} x\left[\tau_{i+1}\right] &= f\left(\tau_{i}, x\left[\tau_{i}\right]\right) + u + v, \ x\left[\tau_{0}\right] = x_{0} \end{aligned} \tag{1.1} \\ u & \in P\left(\tau_{i}\right), \ v \in O\left(\tau_{i}\right) \end{aligned}$$

Here x is an *m*-dimensional vector, $\tau_0 < \tau_1 < \ldots < \tau_n = \vartheta$ are fixed instants, the function f is continuous together with its partial derivatives with respect to x_j $(j = 1, \ldots, m)$, u and v are the players' controls, $P(\tau_i)$, $Q(\tau_i)$ are convex compacta. Let the target function $\sigma(x)$, continuous together with its partial derivatives, be prescribed. Player u must minimize $\sigma(x)$ at instant $\tau_n = \vartheta$ and player v must maximize it.

The game is formalized as follows. By a positional strategy of its player u we shall mean any function $U = u(\tau_i, x)$ satisfying the inclusion $u(\tau_i, x) \in P(\tau_i)$. Just as in /1,4/, any solution of the equation

$$\begin{aligned} x \left[\tau_{i+1}\right] &= f \left(\tau_i, x \left[\tau_i\right]\right) + u \left(\tau_i, x \left[\tau_i\right]\right) + v \left[\tau_i\right] \\ x \left[\tau_0\right] &= x_0, v \left[\tau_i\right] \in Q \left(\tau_i\right), \ i = 0, \ldots, n-1 \end{aligned}$$

is called a polygonal line $x[\cdot] = x[\cdot, \tau_0, x_0, U, v[\cdot]]$. A motion $x[\cdot] = x[\cdot, \tau_0, x_0, U]$ of system (1.1), generated by strategy U, is any limit of the convergent sequence of polygonal lines $x_k[\cdot] = x[\cdot, \tau_0, x_0, U, v_k[\cdot]]$, i.e.

$$x[\tau_i] = \lim x_k[\tau_i], k \to \infty$$

We formulate the following problem.

Problem 1. Find a strategy U_{θ} of the first player, satisfying the equality

$$\max_{\substack{x_1 \\ x_1 \\ \cdots \\ x_n \\ \cdots \\ x_n$$

2. Let us derive the main results. For this purpose we introduce the following definitions. Suppose that some strategy U has been selected. We say that at instant τ_i the motion $x[\cdot] = x[\cdot, \tau_0, x_0, U]$ has passed into the state $s[\tau_i] = \{x[\tau_i], u[\tau_i]\}$ if there exists a sequence of polygonal lines $x_k[\cdot] = x[\cdot, \tau_0, x_0, U, v_k[\cdot]]$ converging to this motion and satisfying at instant τ_i the equality

$$u[\tau_i] = \lim u(\tau_i, x_k[\tau_i]), \quad k \to \infty$$

We shall say that the motion $x[\cdot] = x[\cdot, \tau_0, x_0, U]$ passes from state $s[\tau_i] = \{x[\tau_i], u[\tau_i]\}$ into state $s[\tau_{i+1}] = \{x[\tau_{i+1}], u[\tau_{i+1}]\}$ if we can find a sequence of polygonal lines $x_k[\cdot] = x[\cdot, \tau_0, x_0, U, v_k[\cdot]]$ converging to this motion and satisfying the relations

$$u[\tau_i] = \lim u(\tau_i, x_k[\tau_i]), u[\tau_{i+1}] = \lim u(\tau_{i+1}, x_k[\tau_{i+1}]), k \to \infty$$

By $u(\tau_i, s)$ we denote the control corresponding to state $\{\tau_i, s\} = \{\tau_i, x, u\}$. Any motion for which the equality

$$\rho = \sigma \left(x_0 \left[\vartheta \right] \right) = \max_{x[\cdot]} \sigma \left(x \left[\vartheta, \tau_0, x_0, U \right] \right)$$
(2.1)

*Prikl.Matem.Mekhan., Vol. 47, No. 3, pp. 355-362, 1983

is valid is called the maximizing motion $x_0[\cdot] = x_0[\cdot, \tau_0, x_0, U]$ for strategy U.

Let $S(\tau_i)$ (i = 0, ..., n - 1) be a collection of all states s through which the maximizing motion (2.1) passes at instant τ_i , i.e.

$$S(\tau_i) = \{s = \{x, u\}, x = x_0 [\tau_i, \tau_0, x_0, U], (2.2) \\ u = u(\tau_i, s), \sigma(x_0 [\vartheta, \tau_i, s, U]) = \rho\}, i = 0, ..., n - 1 \\ S(\vartheta) = W = \{w, w = x_0 [\vartheta, \tau_0, x_0, U]\}$$

By $S(\tau_{i+1}, \tau_i, s_*)$ we denote the set of all states through which the maximizing motion (2.1) passes at instant τ_{i+1} under the condition that this motion passed through state s_* at instant τ_i . i.e.

$$S(\tau_{i+1}, \tau_i, s_{\bullet}) = \{s \in S(\tau_{i+1}), s = \{x_0[\tau_{i+1}], u[\tau_{i+1}]\}, u[\tau_{i+1}]\}, u[\tau_{i+1}] = u(\tau_{i+1}, s), x_0[\tau_{i+1}] = x_0[\tau_{i+1}, \tau_i, s_{\bullet}, U]\}$$
(2.3)

Let $\{\beta (A, \tau_{i+1}, \tau_i, s), A \subset S(\tau_{i+1}), s \in S(\tau_i), i = 0, \ldots, n-1\}$ be the system of regular probabilistic Borel measures concentrated on the sets $S(\tau_{i+1}, \tau_i, s)$ from (2.3) and integrable with respect to the $s \in S(\tau_i)$ from (2.2). For this system of measures we set

$$\begin{aligned} \psi(\tau_{n-1}, s_{*}) &= \int_{W} \frac{\partial \sigma^{*}}{\partial x} (w) \beta (dw, \tau_{n}, \tau_{n-1}, s_{*}) \end{aligned}$$
(2.4)

$$\begin{aligned} \psi(\tau_{i}, s_{*}) &= \int_{S(\tau_{i+1})} \frac{\partial f^{*}}{\partial x} (\tau_{i+1}, x) \psi(\tau_{i+1}, s) \beta (ds, \tau_{i+1}, \tau_{i}, s_{*}) \\ (i = 0, \dots, n-2) \\ \nu (A, \tau_{i+1}, \tau_{i}, s_{*}) &= \beta (A, \tau_{i+1}, \tau_{i}, s_{*}) \\ \nu (A, \tau_{j}, \tau_{i}, s_{*}) &= \int_{S(\tau_{i+1})} \nu (A, \tau_{j}, \tau_{i+1}, s) \beta (ds, \tau_{i+1}, \tau_{i}, s_{*}) \\ (j = i + 2, \dots, n-1) \\ \frac{\partial s}{\partial x} &= \left\{ \frac{\partial \sigma}{\partial x_{j}}, j = 1, \dots, m \right\}, \quad \frac{\partial f}{\partial x} = \left\{ \frac{\partial f_{j}}{\partial x_{j}}, \quad k, j = 1, \dots, m \right\} \end{aligned}$$

 $(G^*$ is the matrix adjoint to G).

Theorem 1. In order for strategy U to solve Problem 1 it is necessary that for this strategy there exist a system of measures $\{\beta (A, \tau_{i+1}, \tau_i, s), A \subset S(\tau_{i+1}), s \in S(\tau_i), i = 0, \ldots, n-1\}$ for which the equalities

$$\langle \psi (\tau_0, s_0) \cdot u (\tau_0, s_0) \rangle = \min_{u \in P(\tau_0)} \langle \psi (\tau_0, s_0) \cdot u \rangle$$
(2.5)

$$\int_{S(\tau_i)} \langle \psi(\tau_i, s) \cdot u(\tau_i, s) \rangle \, \nu(ds, \tau_i, \tau_0, s_0) = \int_{S(\tau_i)} \min_{u \in P(\tau_i)} \langle \psi(\tau_i, s) \cdot u \rangle \, \nu(ds, \tau_i, \tau_0, s_0) \quad (i = 1, \ldots, n-1)$$

are fulfilled, where $\langle p \cdot q \rangle$ is the scalar product of p and q, $\{\tau_i, s_*\} = \{\tau_i, x_*, u_*\}, u_* = u(\tau_i, s_*)$, the quantities $\psi(\tau_i, s), v(\cdot, \tau_i, \tau_0, s_0)$ are prescribed in accord with (2.4).

We remark that the $\psi(\tau_i, s)$ in (2.4) are analogous to the adjoint functions from /2,5/. Let us consider a linear conflict-controlled system

$$x[\tau_{i+1}] = A(\tau_i) x[\tau_i] + u + v, \ x[\tau_0] = x_0$$
(2.6)

for which the functions $\psi(au_i,s)$ are given by the formulas

$$\psi(\tau_{n-1}, s_{*}) = \int_{W} \frac{\partial \sigma^{*}}{\partial x} (w) \beta (dw, \tau_{n}, \tau_{n-1}, s_{*})$$

$$\psi(\tau_{i}, s_{*}) = A^{*}(\tau_{i+1}) \int_{S(\tau_{i+1})} \psi(\tau_{i+1}, s) \beta (ds, \tau_{i+1}, \tau_{i}, s_{*}) \quad (i = 0, ..., n-2)$$
(2.7)

Theorem 2. Let the discrete motions be described by the linear Eq.(2.6) and let the target function $\sigma(x)$ be convex. Then, in order for strategy U to solve Problem 1 it is necessary and sufficient that conditions (2.5), wherein the functions $\psi(\tau_i, s)$ have been defined by relations (2.7), be fulfilled for some system of measures { $\beta(A, \tau_{i+1}, \tau_i, s), A \subset S(\tau_{i+1}), s \in S(\tau_i)$ }. 3. We derive auxiliary statements which will aid the proof of Theorem 1. Suppose that some strategy of the first player has been selected and that positive numbers α and ε have been prescribed. By $\{x_{\alpha} [\cdot] = x_{\alpha} [\cdot, \tau_0, x_0, U]\}$ we denote the collection of all α -maximizing motions for strategy U, i.e.

$$\sigma (x_{\alpha} [\vartheta]) \ge \rho - \alpha, \rho = \max_{x[\cdot]} \sigma (x [\vartheta, \tau_0, x_0, U])$$
(3.1)

Let $S_{\alpha}(\tau_i)$ be the set of all possible states $s = \{x, u\}$ through which the α -maximizing motions (3.1) pass at instant τ_i , where

$$S_{\alpha}(\tau_n) = W_{\alpha} = \{w, w = x_{\alpha}[\theta, \tau_0, x_0, U], \sigma(w) \geqslant \rho - \alpha\}; S_{\alpha}(\tau_{i+1}, \tau_i, s_*)$$

is the set of all states through which the α -maximizing motions pass at instant τ_{i+1} under the condition that these motions passed through state s_* at instant τ_i ; { $\beta_{\alpha}(A, \tau_{i+1}, \tau_i, s_*), A \subset S_{\alpha}(\tau_{i+1}), s \in S(\tau_i), i = 0, ..., n-1$ } is a system of regular probabilistic Borel measures concentrated on $S_{\alpha}(\tau_{i+1}, \tau_i, s_*)$ and integrable with respect to $s_* \in S(\tau_i)$.

We set

$$\begin{split} \psi_{\beta}(\tau_{n-1}, s_{\bullet}) &= \int_{W_{\alpha}} \frac{\partial \varepsilon^{\bullet}}{\partial x} (w) \beta_{\alpha} (dw, \tau_{n}, \tau_{n-1}, s_{\bullet}) \end{split}$$
(3.2)
$$\psi_{\beta}(\tau_{i}, s_{\bullet}) &= \int_{S_{\alpha}(\tau_{i+1})} \frac{\partial f^{\bullet}}{\partial x} (\tau_{i+1}, x) \psi_{\beta}(\tau_{i+1}, s) \beta_{\alpha} (ds, \tau_{i+1}, \tau_{i}, s_{\bullet}) \\ (i = 0, \dots, n - 2) \\ v_{\beta} (A, \tau_{i+1}, \tau_{i}, s_{\bullet}) &= \beta_{\alpha} (A, \tau_{i+1}, \tau_{i}, s_{\bullet}) \\ v_{\beta} (A, \tau_{j}, \tau_{i}, s_{\bullet}) &= \int_{S_{\alpha}(\tau_{i+1})} v_{\beta} (A, \tau_{j} \tau_{i+1}, s) \beta_{\alpha} (ds, \tau_{i+1}, \tau_{i}, s_{\bullet}) \\ (j = i + 2, \dots, n - 1) \\ \varphi_{\beta}(\tau_{i}, s_{\bullet}, z, u, \alpha, \varepsilon) &= \langle \left(\frac{\partial f^{\bullet}}{\partial x} (\tau_{i}, x_{\bullet}) \psi_{\beta}(\tau_{i}, s_{\bullet}) \right) \cdot (z - x_{\bullet}) \rangle + \\ \varepsilon \langle \psi_{\beta}(\tau_{i}, s_{\bullet}) \cdot (u - u(\tau_{i}, s_{\bullet})) \rangle + \\ \varepsilon \sum_{i=i+1}^{n-1} \int_{S_{\alpha}(\tau_{i})} \min_{u \equiv P(\tau_{i})} \langle \psi_{\beta}(\tau_{i}, s) \cdot (u - u(\tau_{i}, s)) \rangle v_{\beta}(ds, \tau_{i}, \tau_{i}, s_{\bullet}) \end{split}$$

$$K = \max_{i, x, u} \max\left\{ \left| \frac{\partial f}{\partial x} \right| + 1.2 |u| \right\}, \quad M = \max_{x} \left| \frac{\partial 5}{\partial x} \right|$$
(3.4)

Here |p| is the Euclidean norm of $p, x \in G$, where G is a compactum in $\mathbb{R}^{(m)}$ containing all possible positions x = x [.] which result from (1.1) when $u \in P(\tau_i), v \in Q(\tau_i)$ $(i = 0, \ldots, n-1)$. By analogy with the material in /1,4/ we define a strategy $U_{\alpha,e} = u(\tau_i, s[\tau_i], z)$ with leader $x [x, \tau, x] U[x, s[\tau_i] = (\tau_i \tau_i)]$

$$x [\cdot, \tau_0, x_0, U], \ s [\tau_i] = \{x [\tau_i], u [\tau_i]\}$$

We say that the strategy $U_{\alpha,e} = u(\tau_i, s[\tau_i], z)$ is a corrected strategy with leader $x[\cdot, \tau_0, x_0, U]$. $s[\tau_i] = \{x[\tau_i], u[\tau_i]\}$ if this strategy is specified by the following rule; for $s[\tau_i] \in S_{\alpha}(\tau_i)$ and $\|x[\tau_i] - z\| \leq \varepsilon K^i$ we set

$$u\left(\tau_{i}, s\left[\tau_{i}\right], z\right) = (1 - \varepsilon) u\left(\tau_{i}, s\left[\tau_{i}\right]\right) + \varepsilon u^{*}\left(\tau_{i}, s\left[\tau_{i}\right], z\right)$$

$$(3.5)$$

Here $u^* = u^* (\tau_i, s[\tau_i], z)$ is any control satisfying the relation

$$\max_{\beta} \varphi_{\beta}(\tau_{i}, s[\tau_{i}], z, u^{*}, \alpha, \varepsilon) = \min_{u \in \mathcal{P}(\tau_{i})} \max_{\beta} \varphi_{\beta}(\tau_{i}, s[\tau_{i}], z, u, \alpha, \varepsilon) = (3.6)$$

$$\max_{\beta} \min_{u \in \mathcal{P}(\tau_{i})} \varphi_{\beta}(\tau_{i}, s[\tau_{i}], z, u, \alpha, \varepsilon) = d(\tau_{i}, s[\tau_{i}], z, \alpha, \varepsilon)$$

where $\beta = \{\beta_{\alpha} (\cdot, \tau_{l+1}, \tau_i, s), l = i, ..., n, -1\}$ while the function $\varphi_{\beta} (\tau_i, s, z, u, \alpha, \varepsilon)$ is defined in accord with (3.3), (3.2). If $s [\tau_i]$ does not belong to $S_{\alpha} (\tau_i)$ or if the inequality $|x[\tau_i] - z| > \varepsilon K^i$ is valid, then we set

$$u(\tau_i, s[\tau_i], z) = u(\tau_i, s[\tau_i])$$
(3.7)

We note that by virtue of the continuity of $\partial\sigma/\partial x, \partial f/\partial x$ the compactness of sets $S_{\alpha}(\tau_{l+1}, \tau_{l}, s)$, as well as of (3.2) and (3.3) it follows that the maximum in (3.6) is achieved in the class of regular Borel measures $\beta = \{\beta_{\alpha}(A, \tau_{l+1}, \tau_{l}, s), A \subset S_{\alpha}(\tau_{l+1}), s \in S_{\alpha}(\tau_{l}), l = i, ..., n - 1\}$ integrable with respect to $s \in S_{\alpha}(\tau_{l})$. The operations of minimum and maximum in (3.6) can permute since $P(\tau_{i})$ is a convex compactum, the function $\varphi_{\beta}(\tau_{i}, s, z, u, \alpha, \varepsilon)$ is linear in u, and $\beta_{\alpha}(\cdot, \tau_{i+1}, \tau_{i}, s)/6/$. In addition, the motions $z[\cdot] = z[\cdot, \tau_{i}, s[\tau_{i}], z, U_{\alpha, \varepsilon}, v[\cdot]]$ are connnected with the motions of the leader $x[\cdot] = x[\cdot, \tau_{i}, s[\tau_{i}], U, v[\cdot]] = x[\cdot, \tau_{0}, x_{0}, U, v[\cdot]]$ by the equalities

$$z [\tau_{i+1}] = f (\tau_i, z [\tau_i]) + (1 - \varepsilon) u (\tau_i, s [\tau_i]) + \varepsilon u^* (\tau_i, s [\tau_i], z [\tau_i]) + v [\tau_i]$$

$$z [\tau_{i+1}] = f (\tau_i, x [\tau_i]) + u (\tau_i, s [\tau_i]) + v [\tau_i]$$

$$s [\tau_i] = \{x [\tau_i], u [\tau_i]\} \bigoplus S_\alpha (\tau_i), |x [\tau_i] - z [\tau_i]| \leq \varepsilon K^i$$

$$z [\tau_{i+1}] = f (\tau_i, z [\tau_i]) + u (\tau_i, s [\tau_i]) + v [\tau_i]$$

$$x [\tau_{i+1}] = f (\tau_i, x [\tau_i]) + u (\tau_i, s [\tau_i]) + v [\tau_i]$$
(3.9)

if
$$s[\tau_i] \notin S_{\alpha}(\tau_i)$$
 or $|x[\tau_i] - z[\tau_i]| > \varepsilon K^i$

We observe that for the prescribed states $s[\tau_i]$ through which the motion $x[\cdot, \tau_0, x_0, U]$ passes, this motion is completely determined by the equations $v = v[\tau_i] \Subset Q(\tau_i)$ (i = 0, ..., n - 1).

Lemma 1. Suppose that the motion $x[\cdot] = x[\cdot, \tau_0, x_0, U]$ of (1.1) passed into the state $s[\tau_i] \in S_{\alpha}(\tau_i)$ at instant τ_i . Then for any positions z and realizations $v = v[\cdot]$ such that $|x[\tau_i] - z| \leq \varepsilon K^i$, $x[0] \in W_{\alpha}$, the strategy $U_{\alpha, \varepsilon}$ of (3.5) and (3.6) guarantees the estimate

 $\sigma (z [\vartheta]) \leqslant \rho + d (\tau_i, s [\tau_i], z, \alpha, \varepsilon) + o (\varepsilon)$ (3.10)

where $z[\cdot] = z[\cdot, \tau_i, z, s[\tau_i], U_{\alpha, \varepsilon}, v[\cdot]]$ is the motion in (3.8) matched with the motion of the leader $x[\cdot, \tau_i, s[\tau_i], U, v[\cdot]]$, $o(\varepsilon)$ is a quantity of a higher order of smallness in comparison with $\varepsilon, \rho, d(\tau_i, s, z, \alpha, \varepsilon)$ are defined in accord with (3.1), (3.6).

Proof. At instant τ_{n-1} , for $s[\tau_{n-1}] \in S_{\alpha}(\tau_{n-1}), |x[\tau_{n-1}] - z| \leq \varepsilon K^{n-1}, x[\vartheta] \in W_{\alpha}$, from (3.5), (3.6), (3.8), (3.1) we have

$$\begin{split} \sigma\left(z\left[\vartheta\right]\right) &\leqslant \rho + \max_{x\left[\cdot\right]} \left[< \frac{\partial \sigma^*}{\partial x} \left(x\left[\vartheta\right]\right) \cdot \left(\frac{\partial f}{\partial x} \left(\tau_{n-1}, x\left[\tau_{n-1}\right]\right) \left(z - x\left[\tau_{n-1}\right]\right)\right) > + \\ \varepsilon &< \frac{\partial \sigma^*}{\partial x} \left(x\left[\vartheta\right]\right) \cdot \left(u^*\left[\tau_{n-1}\right] - u\left[\tau_{n-1}\right]\right) > \right] + o\left(\varepsilon\right) \\ u^*\left[\tau_{n-1}\right] &= u^*\left(\tau_{n-1}, s\left[\tau_{n-1}\right], z\right), u\left[\tau_{n-1}\right] = u\left(\tau_{n-1}, s\left[\tau_{n-1}\right]\right) \end{split}$$

Hence from (3.2), (3.3), (3.6) we obtain

$$\begin{split} \sigma\left(z\left[\boldsymbol{\vartheta}\right]\right) &\leqslant \rho + \max_{\boldsymbol{\vartheta}} \left[< \left(\frac{\partial f^{*}}{\partial x} \left(\tau_{n-1}, x\left[\tau_{n-1}\right]\right) \psi\left(\tau_{n-1}, s\left[\tau_{n-1}\right]\right)\right) \times \left(z - x\left[\tau_{n-1}\right]\right) > + \\ \varepsilon < \psi\left(\tau_{n-1}, s\left[\tau_{n-1}\right]\right) \cdot \left(u^{*}\left[\tau_{n-1}\right] - u\left[\tau_{n-1}\right]\right) > \right] + o\left(\varepsilon\right) = \rho + d\left(\tau_{n-1}, s\left[\tau_{n-1}\right], z, \alpha, \varepsilon\right) + o\left(\varepsilon\right) \end{split}$$

Thus, inequality (3.10) has been proved for instant τ_{n-1} . We assume that (3.10) holds for i = l + 1 and we obtain the required assertion for i = l. As a matter of fact, from (3.8), (3.5) it follows that if position z and state $s[\tau_l] \in S_\alpha(\tau_l)$ are connected by the relation $|x[\tau_l] - z] \leq \varepsilon K^l$, then the estimate $|x[\tau_{l+1}] - z[\tau_{l+1}]| \leq \varepsilon K^{l+1}$ will be fulfilled for the motions $z[\tau_{l+1}] = z[\tau_{l+1}, \tau_l, z, s[\tau_l], U_{\alpha, \varepsilon'}, v[\cdot]], x[\tau_{l+1}] = x[\tau_{l+1}, \tau_l, s[\tau_l], U, v[\cdot]]$ from (3.8). Then, according to (3.10), (3.2), (3.3), (3.6), (3.8), (3.1) we obtain

if

(2 1 2)

The latter relation completes the Lemma's proof.

The next lemma follows immediately from Lemma 1 as well as from (3.7) and (3.9).

Lemma 2. One of the estimates: either

$$\sigma(z[\vartheta]) \leqslant \rho + d(\tau_0, s_0, \alpha, \varepsilon) + o(\varepsilon)$$
(3.11)

or

 σ (z [ϑ]) $\leq \rho - \alpha + \epsilon M K^n$

is fulfilled for any motion $z[\cdot] = z[\cdot, \tau_0, x_0, U_{\alpha, \epsilon}, v[\cdot]]$ of (3.8), (3.9), generated by an α, ϵ corrected strategy with leader. Here $s_0 = \{x_0, u_0\}, u_0 = u(\tau_0, x_0)$ and the quantities $d(\tau_i, s, x, \alpha, \varepsilon)$, K, M are prescribed in accord with (3.6), (3.4).

Let $Z(\tau_i, \alpha, \epsilon)$ be the set of all positions z for each of which we can find a motion $x\left[\cdot\right]_{i} = x\left[\cdot, \tau_{0}, x_{0}, U
ight]$ satisfying the estimate $|x\left[\tau_{i}\right] - z| \leqslant \epsilon K$. We introduce the set $Z_{1}\left(\tau_{i}, \alpha, \omega\right)$ ε); here $z \in Z_1$ $(\tau_i, \alpha, \varepsilon)$ if for any motion $x[\cdot] = x[\cdot, \tau_0, x_0, U]$ satisfying the inequality $|x[\tau_i]|$ $|z_i| \leq \varepsilon K_i$ and any state $s[\tau_i] = \{x[\tau_i], u[\tau_i]\}$ through which this motion passed at instant au_i , the inclusion $s\left[au_i
ight] \in S_{lpha}\left(au_i
ight)$ is valid. Now we set

$$Z_{2}(\tau_{i}, \alpha, \varepsilon) = Z(\tau_{i}, \alpha, \varepsilon) \setminus Z_{1}(\tau_{i}, \alpha, \varepsilon), \quad Z_{3}(\tau_{i}, \alpha, \varepsilon) = R^{(m)} \setminus Z(\tau_{i}, \alpha, \varepsilon)$$

Here $A \smallsetminus B$ is the difference of sets A and $B, R^{(m)}$ is an m-dimensional space. An lpha. arepsiloncorrected positional strategy $U_{\alpha, \varepsilon} = u_{\alpha, \varepsilon} (\tau_i, z)$ is the function determined by the conditions

$$u_{\alpha, \varepsilon} (\tau_i, z) = (1 - \varepsilon) u (\tau_i, s_*) + \varepsilon u^* (\tau_i, s_*, z)$$

$$\varphi (\tau_i, s_*, z, u^*, \alpha, \varepsilon) = \min_s d (\tau_i, s, z, \alpha, \varepsilon)$$

$$z \in Z_1 (\tau_i, \alpha, \varepsilon), s = \{x, u\}, s_* = \{x_*, u_*\}, |x_* - z| \leq \varepsilon K^i,$$

$$|x - z| \leq \varepsilon K^i$$
(3.12)

(the functions $\varphi(\tau_i, s, z, u, \alpha, \varepsilon), d(\tau_i, s, z, \alpha, \varepsilon)$ are defined by relations (3.3), (3.6))

$$u_{\alpha, \varepsilon} (\tau_i, z) = u (\tau_i, s_*)$$

$$s_* = \{x_*, u_*\} \notin S_{\alpha} (\tau_i), \quad z \in Z_2 (\tau_i, \alpha, \varepsilon), \quad |x_* - z| \leq \varepsilon K^i$$

$$u_{\alpha, \varepsilon} (\tau_i, z) = u (\tau_i, z), \quad z \in Z_3 (\tau_i, \alpha, \varepsilon)$$

$$(3.13)$$

Comparing (3.12) and (3.13) with (3.6) and (3.7) from Lemmas 1 and 2, we obtain the following result.

Lemma 3. An α, ε -corrected positional strategy $U_{\alpha, \varepsilon}$ guarantees one of estimates (3.11) for any motion $z[\cdot] = z[\cdot, \tau_0, x_0, U_{\alpha, \epsilon}]$.

Hence follows the next statement.

Lemma 4. In order for strategy U to solve Problem 1 it is necessary that for any lpha>0a system of measures $\beta = \{\beta_{\alpha} (A, \tau_{i+1}, \tau_i, s), A \subset S_{\alpha} (\tau_{i+1}), s \in S_{\alpha} (\tau_i) \ (i = 0, \dots, n-1)\}$ be found satisfying the conditions

$$\langle \psi_{\beta}(\tau_{0}, s_{0}) \cdot u(\tau_{0}, s_{0}) \rangle = \min_{u \in P(\tau_{0})} \langle \psi_{\beta}(\tau_{0}, s_{0}) \cdot u \rangle$$

$$\int_{S_{\alpha}(\tau_{i})} \langle \psi_{\beta}(\tau_{i}, s) \cdot u(\tau_{i}, s) \rangle v_{\beta}(ds, \tau_{i}, \tau_{0}, s_{0}) =$$

$$\int_{S_{\alpha}(\tau_{i})} \min_{u \in P(\tau_{i})} \langle \psi_{\beta}(\tau_{i}, s) \cdot u \rangle v_{\beta}(ds, \tau_{i}, \tau_{0}, s_{0}) \quad (i = 1, ..., n - 1)$$

$$(3.14)$$

Indeed, suppose that relations (3.14) are not fulfilled for some α . Then we can find $\varepsilon = \varepsilon(\alpha)$ such that for the positional strategy $U_{\alpha,\varepsilon}$ of (3.12), (3.13) we obtain, in accordance with Lemma 3.

$$\sigma (z [\vartheta, \tau_0, x_0, U_{\alpha, \varepsilon}]) < \rho = \max_{x[\cdot]} \sigma (x [\vartheta, \tau_0, x_0, U])$$

where $z\left[\cdot, \tau_0, x_0, U_{\alpha, \epsilon}\right]$ is any motion generated by strategy $U_{\alpha, \epsilon}$. Thus, strategy U is not a solution of Problem 1, which proves Lemma 4.

We now complete the proof of Theorem 1. We set $\alpha = \alpha$ (r) = 1/r (r = 1, 2, ...). By Lemma 4 there exists a sequence of measures $\{\beta_{\alpha} (A, \tau_{i+1}, \tau_i, s), A \subset S_{\alpha} (\tau_{i+1}), s \in S_{\alpha} (\tau_i), i = 0, \ldots, n-1\}, \alpha = 0, \dots, n-1\}$ 1/r, satisfying relations (3.14). From this sequence we can pick out a subsequence of measure $\{\beta_{\alpha} (A, \tau_{i+1}, \tau_i, s)\}$, which, on the strength of the inclusions $S(\tau_i) \subset S_{\alpha}(\tau_i)$, will weakly* converge to some system of measures $\{\beta (A, \tau_{i+1}, \tau_i, s), A \subset S(\tau_{i+1}), s \in S(\tau_i)\}$, concentrated on the sets $S(\tau_{i+1}, \tau_i, s), s \in S(\tau_i)$ of (2.2), (2.3). Here the functions $\psi_{\beta}(\tau_i, s), v_{\beta}(\cdot, \tau_i, \tau_0, s_0)$ of (3.2) will converge to $\psi(\tau_i, s), v(\cdot, \tau_i, \tau_0, s_0)$ of (2.4), which are defined by the system of measures { $\beta(A, \tau_{i+1}, \tau_i, s), A \subset S(\tau_{i+1}), s \in S(\tau_i), i = 0, ..., n - 1$ }. Consequently, equalities (2.5) follow from equalities (3.14), which proves Theorem 1.

4. We consider a conflict-controlled linear system (2.6) with the convex target function $\sigma(x)$. Theorem 2 can be proved by the scheme in $\frac{2}{2}$.

We present the proof of Theorem 2. The necessity of conditions (2.5) follows directly from Theorem 1. Let us assume that for some positional strategy U_* there exists a system of measures { β (A, τ_{i+1} , τ_i , s), $A \subset S(\tau_{i+1})$, $s \in S(\tau_i)$, i = 0, ..., n-1} for which relations (2.5) are fulfilled. We show that U_* solves Problem 1. Let U be any other positional strategy, $x[\cdot] = x[\cdot, \tau_0, x_0, U_*, v[\cdot]]$ be the motions generated by one and the same control $v[\cdot]$, where $x_*[\cdot, \tau_0, x_0, U_*, v[\cdot]]$ is the maximizing motion for strategy U_* . Then from (2.5) - (2.7) we obtain

$$\int_{S(\tau_1)} \langle A^*(\tau_1) \Psi(\tau_1, s_*) \cdot (x_*[\tau_1] - x[\tau_1]) \rangle \beta (ds_*, \tau_1, \tau_0, s_0) =$$

$$\langle \Psi(\tau_0, s_0) \cdot (u_*[\tau_0] - u[\tau_0]) \rangle = \min_{u \in P(\tau_0)} \langle \Psi(\tau_0, s_0) \cdot (u - u[\tau_0]) \rangle \leqslant 0$$

where $u[\tau_0] = u(\tau_0, s_0)$ and the function $\psi(\tau_i, s)$ of (2.7) is specified in terms of the system of measures ($\beta(A, \tau_{i+1}, \tau_i, s), A \subset S(\tau_{i+1}), s \in S(\tau_i)$) defined by strategy U_* . From the latter estimate we see that a set $D(\tau_1)$ of nonzero measure $\beta(\cdot, \tau_1, \tau_0, s_0)$ exists such that the inequality

$$\langle \Psi (\tau_1, s_* [\tau_1]) \cdot A (\tau_1) (x_* [\tau_1] - x [\tau_1]) \rangle \leqslant 0$$

is fulfilled for all $s_*[\tau_1] \in D(\tau_1) \subset S(\tau_1)$. We assume further by induction that the estimate

$$\langle \psi (\tau_i, s_* [\tau_i]) \cdot A (\tau_i) (x_* [\tau_i] - x [\tau_i]) \rangle \leqslant 0$$

$$s_* [\tau_i] \in D (\tau_i), \ \nu (D (\tau_i), \tau_i, \tau_0, s_0) > 0$$

$$(4.1)$$

is valid for instant τ_i . Let us show that a motion $x_*[\cdot, \tau_0, x_0, U, v[\cdot]]$ can be found, for which estimate (4.1) is preserved at instant τ_{i+1} . Indeed, from (2.5) - (2.7) and (4.1) we have

$$\int_{\substack{\mathbf{x} \in \mathbf{Y}(\tau_i)}} \langle \cdot \mathbf{I}^*(\tau_{i+1}) \, \psi(\tau_{i+1}, s_*) \cdot \langle x_*[\tau_{i+1}] - x[\tau_{i+1}] \rangle \rangle \, \beta(ds_*, \tau_{i+1}, \tau_i, s_*[\tau_i]) = \\ \langle \psi(\tau_i, s_*[\tau_i]) \cdot A(\tau_i) \, \langle x_*[\tau_i] - x[\tau_i] \rangle \rangle + \langle \psi(\tau_i, s_*[\tau_i]) \cdot \langle u_*[\tau_i] - u[\tau_i] \rangle \rangle \leqslant \\ \min_{\substack{\mathbf{u} \in \mathbf{P}(\tau_i)}} \langle \psi(\tau_i, s_*[\tau_i]) \cdot \langle u - u[\tau_i] \rangle \rangle \leqslant 0$$

Therefore, a set $D(\tau_{i+1})$ ($v(D(\tau_{i+1}), \tau_{i+1}, \tau_0, s_0) > 0$) exists such that the inequality

$$\langle \boldsymbol{\psi} \; (\boldsymbol{\tau}_{i+1}, \; \boldsymbol{s}_{*} \; [\boldsymbol{\tau}_{i+1}]) \cdot \boldsymbol{A} \; (\boldsymbol{\tau}_{i+1}) \; \left(\boldsymbol{x}_{*} \; [\boldsymbol{\tau}_{i+1}] \; - \; \boldsymbol{x} \; [\boldsymbol{\tau}_{i+1}] \right) \rangle \leqslant 0$$

is fulfilled for all $s_*[\tau_{i+1}] \in D(\tau_{i+1})$. Hence, using (3.2) and the convexity of $\sigma(x)$, we finally obtain

$$\begin{array}{c} \displaystyle \underbrace{\frac{\partial \sigma^{\bullet}}{\partial x}}_{\sigma \left(x_{*}\left[\vartheta\right]\right] - x\left[\vartheta\right]\right) \geq 0} \\ \sigma \left(x_{*}\left[\vartheta\right]\right) = \max_{\pi\left(\cdot\right)} \sigma \left(x\left[\vartheta, \tau_{0}, x_{0}, U_{*}\right]\right) \leq \max_{\pi\left(\cdot\right)} \sigma \left(x\left[\vartheta, \tau_{0}, x_{0}, U\right]\right) \end{array}$$

which proves Theorem 2.

REFERENCES

1. KRASOVSKII N.N. and SUBBOTIN A.I., Positional Differential Games. Moscow, NAUKA, 1974.

- 2. PONTRIAGIN L.S., BOLTIANSKII V.G., GAMKRELIDZE R.V. and MISHCHENKO E.F., The Mathematical
- Theory of Optimal Processes. English translation: Pergamon Press, Book No. 10176, 1964. 3. PONTRIAGIN L.S., On linear differential games, P.I. Dokl. Akad. Nauk SSSR, Vol.174, No.6,
- 1967. 4. SUBBOTIN A.I. and CHENTSOV A.G., Security Optimization in Control Problems. Moscow, NAUKA, 1981.
- 5. BOLTIANSKII V.G., Optimal Control of Discrete Systems. Moscow, NAUKA, 1973.
- 6. Infinite Antagonistic Games. Moscow, FIZMATGIZ, 1963.

Translated by N.H.C.

308