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A NECESSARY OPTIMALITY CONDITION IN A
GAME OF ENCOUNTER AT A PRESCRIBED INSTANT*

$.¥. TARLINSKII

A necessary condition is derived, which must be satisfied by the positional strategy
minimizing the game's value, It is shown that for a linear system and a convex tar-
get function this condition is sufficient. "The paper abuts the researches in /1- 4/.

1. We consider 'a discrete conflict-controlled system described by the equation

il =f@n 2zl +u+v, 2lni=2 {1.1)
=Py, ve i)

Here & is an m~dimensional vector, T, <1 <<...<{T, =% are fixed instants, the function f
is continuous together with its partial derivatives with respect to z;(j=1,....,m), u and v
are the players' controls, P (t;), Q(t;) are convex compacta. Let the target function o (z),
continuous together with its partial derivatives, be prescribed. Player u nmust minimize o (x)
at instant 1, =¥ and player v must maximize it.

The game is formalized as follows. By a positional strategy of its player u we shall
mean any function U =u {t;, z} satisfying the inclusion u({t, )& P (1;). Just as in /1,4/, any
solution of the eguation

2 [t = f Gy 2 l0]) + u (v, 2 [v]) + v )
zltgd =2, vl e=Q (), i=0,...,n—1

is called a polygonal line zl-l =z, 7, 2 U, v{-. 2 motion z1-] =z, v 5. U] of system
(1.1}, generated by strategy U, is any limit of the convergent sequence of polygonal lines
o -l== Foo Tos 2o, Ui L, de.
2 it} = lim z, [1,}, & = 00

We formulate the following problem.
Problem 1. Find a strategy U/, of the first player, satisfying the equality

n;;x}l: o {x 18, 15, 34, Upl) = mgi mg?i) o {18, 5. 20, U

2. Let us derive the main results, For this purpose we introduce the following defini-
tions. Suppose that some strategy U has been selected. We say that at instant T; the motion
z[-1=21[-, 75, %, U] has passed into the state st = {zlrd,ult;]} if there exists a sequence
of polygonal lines x{-l= x{.,15. 2, U, v [-1] converging to this motion and satisfving at in-
stant 7; the eguality

gl =limu (v, 2, 1), &2— o

We shall say that the motion z[-]1 = zl:, 1, 2,, Ul passes from state slt,] = {z v}, ulv;]} into
state s [ty = {2 [t1in],  [75,]} if we can find a sequence of polygonal lines =z [.] = z[., 7, Ty,
U,v; [-]]  converging to this motion and satisfying the relations

ulnl = Ym u (7, 2, Frgd), o bv] = Hm u {14, T [Tl k> oo
By wu (1;,8) we denote the control corresponding to state {t;,s} = {r;, 2, u}. Any motion for which

the equality

p =0 (x, [8]) = xxnrglx o (z [8, 1y, 2o, UD) {2.1)
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is valid is called the maximizing motion z, (-] = 2, [., 14, 2, U] for strategy U .
Let S(w;) (=0,...,n—1) be a collection of all states s through which the maximizinc
motion (2.1) passes at instant T;, i.e.

1o
o

S(‘c,-)={s={a:, u}7 I = X, [Tiv'fo-, zy, Ul (2,
u=u(1:i,s), g (Io['&,'ﬁ-,é‘, U])=p}, i=0,...,n—1
S =W={w w=uz,9, 15, 29, U}}

By S (Tis1» Ti» S4) we denote the set of all states through which the maximizing motion (2.1) pas-
ses at instant T;,, under the condition that this motion passed through state s, at instant T;.
i.e.

S (Tivrs Tir Sa) = (S E § (Tis1)s 8 = {2 [Tina), uw [1ed}s (2.3)
u Tl = u (T, 8)y 2o [Tia] = 2p [Th01, 70y 840 U1}
Let {B (A, Tios Tt SH A T S (i) s =S (1), i = 0, .. ., »n — 1} be the system of regular probabilistic

Borel measures concentrated on the sets § (T4, Ti;»$) from (2.3) and integrable with respect to
the s= S (1;) from (2.2). For this system of measures we set

dc* 5
‘P(Tn-u S*) = S —a—i—'(TIJ)ﬁ(du',Tn, Tn—lvs*) (2 .4)
w

P (Ti 89) = S %(Tm, )Y (Tis, 5) B (DS, Tivrs Ty, S

S(ti41)

i=0,...,n—2)
V (A, Tian Tir S¢) = B (A, Tizgs Tiy Sy)
V(A1T;‘,Tiy3*)= S V(AyTj,TiH,S)ﬁ(dsvTi+17“7ivs*)

S(ti4p)
G=i+2,...,n—1)
ds g . of ofy SN
_31—2{717']=1""’m}' —‘F—{Ta:, L,]—l,...,m}

(G* is the matrix adjoint to G).

Theorem 1. 1In order for strategy [/ to solve Problem 1 it is necessary that  for this
strategy there exist a system of measures {p (4, Tit1, T, 8),A C S (Tis1), s= S (1), i =0,....n — 1}
for which the equalities

< (Tos So)-U (Tos $o)> = mipx} )(‘P (To, So} ) {2.5)
u=P(t,

S <'||J(T1-,S) u (Tir S)> v (dS, Tiy Tos 30) = S min <‘P (Tiv S)-Ll.) v (dsv Tiy Toy 50) (1‘ = 1’ caegft— 1)
S(t;) S(t;) uEP(Ty)

are fulfilled, where <(p-q> is the scalar product of p and ¢, {Ti, 8¢} = {Tis Tur Us}s Us = % (Ti, S4)s
the quantities 1 (t;,s), v (+, T;y Ty, S) are prescribed in accord with (2.4).

We remark that the ¥ (¥;,8) in (2.4) are analogous to the adjoint functions from /2,5/.
Let us consider a linear conflict-controlled systenm

sl =Altald +u+v, alnd =g (2.6

for which the functions 1 (ti, s) arxe given by the formulas

B (Tnor, 84) = S%G;—(w)ﬁ(dw, Tr Tnos Sx) (2.7)
w
YT, S4) = A¥ (T341) S Y (Tisas s)ﬁ(ds, Tiri, Tir Sa) (i =0,...,i—2)

S(1i4y)

Theorem 2. Let the discrete motions be described by the linear Eg.(2.6) and let the tar-
get function ¢ (zr) be convex. Then, in order for strategy U to solve Problem 1 it is necessary
and sufficient that conditions {(2.5), wherein the functions V¥ (ti;s) have been defined by rela-
tions (2.7), be fulfilled for some system of measures {f (4, Tiw Toy 8) 4 C S {tin), 5 E S (1)} .



305

3. We derive auxiliary statements which will aid the proof of Theorem 1. Suppose that
some strategy of the first player has been selected and that positive numbers o and & have
been prescribed. By {xy[-] =z [:, Tos Zy, Ul} we denote the collection of all a-maximizing mo-

tions for strategy U, i.e.

F@e ) =>p —a, p= n:a]x o (x [¥, 19, o, Ul) (3.1)

Let Sg (1;) be the set of all possible states s = {z,u} through which the a-maximizing mo-
tions (3.l) pass at instant T;, where

Se (1) = Wo = {w, w= 248,70, Zo» UL, (@) = p — &} Sa {Tisrs Tiy $i)

is the set of all states through which the a-—maximizing‘motions pass at instant T;, under
the condition that these motions passed through state s, at instant T;5 {Pa (4, T Ti S AC

Se (tis1), sE S (ti)y i=0,...,n—1} is a system of regular probabilistic Borel measures con-
centrated on Se (Tisi» Tir S¢) and integrable with respect to s, € § (1)
We set
6 *
Py (Tness S0 = § T () Ba (2, T Tocts 54) (3.2)
WG
af*
Pp (Ti5 84} = S wre (T4, ) P (Tis1s 8) ﬂcc (ds, Tis1s Tis Sg)
Sg(tis)
(i=0,....,n—2)
v (A, Tivrs Tis Sa) = Pa (4, Tivrs Tis S4)
Va4, 75 T 5e) = S V{4, T;Tis1: 8) Pa (ds, Tisa, Tir )
. Spltisy)
G=i4+2,....,n—1)
are R
8 (%o S 2, 1,2, 8) = [ (510 2a) ¥ (54 80) - (2 — 2) > + (3.3)
8 {Pp (i Sa) {1t — U {71, 86> +
n—1

e D § min ¥t 9) (u ~u (e, s valds, 1T 54)
Teit1 Sg(1)) uzP(t;

K::maxmaxﬂ-—gf;—\-}-i.Z[ul}, Mzm:lx\% (3.4)

i,x,u

Here|p |is the Euclidean norm of p, & G, where G is a compactum in R(™ containing all pos-
sible positions z ==z [-] which result from (l.1) when ua& P (v;), ve=Q (v;} (i =0,...,n—1). By
analogy with the material in /1,4/ we define a strategy Ug .= u (13, slt;], z) with leader

z [, Ty 2o, Ul, sl = {z 1], u [;]}
We say that the strategy Uy, = u (1;, s[t:],2) is a corrected strategy with leader «zI[-, Ty, =,
Ul slul = {zlw), ult]} if this strategy is specified by the following rule; for slt;] & S, (1))
and jzfr] — z | < eK' we set

w(t, sl z) = (1 — &) u (1, s [t)) + eu* (v;, s [t], 2) (3.5)

Here u* = u* (1;,s{1;).2) is any control satisfying the relation

max ¢p (T, s[7;], 2, u*, @, €)= min max @g(1;, s[1;], 2, u, 2, €)= (3.6)
3 ugP(t) B
max min ¢p (7, 5[1;], 5,4, 0,8)=d (75, 5[1;,], 2, @, &)
B usP(ty)
where B = {fa (-» 1. T, 8), I =1i,...,n.—1} while the function op (t;) 8 2, U, a, &) is defined

in accord with (3.3), (3.2). If s(t;] does not belong to Sa(1;) or if the inequality |z l[1,) —
z {>¢eK' 1is valid, then we set

u(ti, sl 2) = u (1, s [ul) (3.7)

We note that by virtue of the continuity of 00/dz,8f/0z the compactness of sets Sg (Tiyg, T, 5),
as well as of (3.2) and (3.3) it follows that the maximum in (3.6) is achieved in the class
of regular Borel measures B = {Bz(4, Tis1, Tty hA C Sa (i), s&SSa (¥)y I=1i,...,n—1} integr-
able with respect to s & Su (1;). The operations of minimum and maximum in (3.6) can permute
since P (1;) is a convex compactum, the function g (T;, S, 2, 4, @, &) is linear in u, and fa (-,
Tivae Tis §) /6/. In addition, the motions 2z (.1 =z[.,T.s{til, 2z, Un,, v (-]l are connnected with
the motions of the leader z[-] =z [, 1. sful, U,v 1] =z [-, t. %o, U, v [-]] by the equalities
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st =fnzlu) + (1 —e)u (t, slnl) + s
eu* (vy, s v, z [t + v vl
zltml = f (v, 2 bn) + u (v, s [w]) + v vl
if
st ={elvl, ulnd} = 8o (1), |2 Iv;] — 2 [1;] | L &
zltgal = f (v, 2 [u]) + u (v, s [0]) + v 3] (3.9
it =f (v, zlu]) +u(ty, s [te]) + v [t}
if 8 [Tt] $ Se (71) or I z [Ti] -2z [Ti] | > Kl

We observe that for the prescribed states slt;] through which the motion =z (., 14, 24, Ul pas-
ses, this motion is completely determined by the equations v=vnuleQ () (=0 ....n —1).

Lemma 1. Suppose that the motion =z[.] = zl., 7y, z,, Ul of (1.1) passed into the state
st &8, (r;) at instant 7. Then for any positions z and realizations v =v{.] such that
jzlt] —z | <<eK, 28l = W,, the strategy U, . of (3.5) and (3.6) guarantees the estimate

oD <<p +d (i, sl1:l 2, a,8) + o (g) (3.10)
where z[-1=2z[-, 1,3 slt), UgevI-]l is the motion in (3.8) matched with the motion of the
leader z[.,7,slwl, U,v{-1l, o(e) is a quantity of a higher order of smallness in comparison
with e, p,d (1;, 8, 2, a,8) are defined in accord with (3.1), (3.6).

Proof. At instant T, , for slt,_le S, (1, ) lzl1,]—:|<ek" z[0leWw,, from (3.5),
(3.6), (3.8), (3.1) we have
ok 8
s (:[B1< p+ max [ <2 o) (—af; (Taepr 2[5y} (2 — 215, 0) ) > +
as*
e < (IO (¥ [Ty ) — u [7,,]) > +0 ()

wkv, J=u*(r, ,s[t,1]2),u [1:"_1] =u (T, - 8(7 4]

Hence from (3.2), (3.3), (3.6) we obtain

afx
s @18) <o+ max [ <( e 2 gD ¥ (T s[5 D) X (& — 2 (5] >+

e<< ¥ (Tn-l‘ s [Tr,.| 1 (u* [Tn_l] —u [Tn_l]) >J +ofe)= p+4d (11;-17 s [11‘..1]7 5, o, 8) +ofe)

Thus, inequality (3.10) has been proved for instant 1, . We assume that (3.10) holds for
i=141 and we obtain the required assertion for =1 As a matter of fact, from (3.8),

(3.5) it follows that if position z and state ;{t] e Se(m) are connected by the relation

|z vl —z|<ek!, then the estimate |zl[7,,]— Z[Tl+1]|<EKl+l will be fulfilled for the motions
2l = 2[5, w o slul, Uy g vl 2l5,,) = o l5, tslul, U,vt]] from (3.8). Then, according to (3.10),

(3.2), (3.3), (3.6), (3.8), (3.1) we obtain

. r Gf*
s1op <ot max| | [<(% 1002 ¥y (5100
5B Lo )

2,
(2L (w2l (2 — 2[5, 45 (k] — e [ ) >

e min <Py, 8) (B —u (T, ))>+

ueEP(Ty,y)

n—1
e Y { mn <wim o>
¥ETFe Siry P

V(g Tyr Trops ) By (ds, Ty T st Fo(e) =

4+ max min Qg (T, [Tl 2 w0 a,8) Fo(e) =
PTTE wpiy PBUCTLY

p+d (T 5 [T,), 20 cne) + 0 (e)
(B‘:—‘B;('v'r“p'fps)v B:(ﬁa(‘vrjq.wrjvs)r f=14+1,...,n—1}
BB = (Bo (- Ty Ty ) f = beoon— 1)
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The latter relation completes the Lemma's proof.
The next lemma follows immediately from Lemma 1 as well as from (3.7) and (3.9).

Lemma 2. One of the estimates: either

o (z [8)) << p + d(Tq: So» Toy @, g) + o (g) (3.11)
or c(z[B)<<p —a+ eMK"
is fulfilled for any motion zl[-] =z (-, Ty %o, Ug,en v [-]1] of (3.8), (3.9), generated by an a, -

corrected strategy with leader. Here sy == {Zo, U0}, Uo=1u (To, Zo) and the quantities d(1;, s, z,a, &),
K. M are prescribed in accord with (3.6), (3.4).
Let Z (ti, a, &) be the set of all positions z for each of which we can find a motion
z[-Li=zl., 15, 2oy U] satisfying the estimate |z [t;l =z | < eK. We introduce the set Z, (1;, a,
&) ; here : = 2, (ti» &, &) if for any motion z[.] ==zl., 7, %,Ul satisfying the inequality |z [t;)
— 2| < ekK; and any state sl1;] = {z[v], u{x;]} through which this motion passed at instant
T; , the inclusion s[1;] & Se (v;)) is valid. Now we set

Z2 (Tiw &, 8) =2 (Ti’av E) \ Zl (Tiv a, 3)7 Z;, (Tiy a, 8) = R™ \ VA (Ti, o, 8)

Here A4 \ B is the difference of sets 4 and B, R™ is an m-dimensional space, An a,&-
corrected positional strategy Ug,s = Uy, e (7;,2) is the function determined by the conditions

Ug,s (Tir 2) = (1 — &) u (T4, 54) + &U* (Ti, Sy 3) (3.12)
@ (Ti, $4» 2, u*, o, €¢) = mind (1;, 8, 2, @, )
8

2E Zy (T, &, €), 8 = {2, u}, Sy = {Tyr Ug)s | T4 — 2 | < €K,
|z -z | < ekt

(the functions ¢ (1;, 8, 3, U, @, &), d (T;, S, 2, @, €) are defined by relations (3.3), (3.6})
Ua, e (Tir 2) = u (15 Se) (3.13)

Sy ={Tar Uy} E Sa (1), 2E Z, (1, 0, 8), |zp — 2| <K

Ug,e (T 2) = u (T4, 2), 2 & Z3 (15, @, &)

Comparing (3.12) and (3.13) with (3.6) and (3.7) from Lemmas 1 and 2, we obtain the following
result.

Lemma 3. An a,e-corrected positional strategy U, guarantees one of estimates (3.11)
for any motion z[.]1=1z{-, To, Zo, Us,el-
Hence follows the next statement.

Lemma 4. 1In order for strategy U to solve Problem 1 it is necessary that for any a >0
a system of measures P = {Bg (4, Tis1y i, 5, 4 C Sa (Tina)s sE8a (1)) (1 =0,...,n—1)} be found
satisfying the conditions
Cp (%o, S0)-u (To, S0) = min (Wp (To, s0) ) (3.14)
ueP(To)
S P (Ti, 8)-u (T3, 5)> vp (dS, Ty, Toy S0) ==
BelT;)

min (Yg(T;, 8)ud va(ds, T;, To, 80) (i=1,...,n—1)
sa(‘!i) ueP(‘ri)

Indeed, suppose that relations (3.14) are not fulfilled for some «. Then we can find
¢e==¢e(a) such that for the pcsitional strategy Ug.e of (3.12), (3.13) we obtain, in accord-
ance with Lemma 3.

0 ([9 1 2, Uy ) <p= t;l[a:]; ¢ (z [8, 1, 2y, U)

where :[., T, % Uy is any motion generated by strategy U
solution of Problem 1, which proves Lemma 4.

We now complete the proof of Theorem 1. We set a=a(r)=1/r (r=1,2,...). By Lemma 4
there exists a sequence of measures {fa (4, Tit);1:,$), AT Se (Tin).sE Sa (1;),i=0,...,n—1}, & =
1/r, satisfying relations (3.14), From this sequence we can pick out a subsequence of measure

{Ba {4, Tiss- T;, 8)}. which, on the strength of the inclusions § (1;) C Se (1;), will weakly* con-
verge to some system of measures {f (4, Tis;» Tiv$), 4 C S (Tin), s = S (1:)}, concentrated on the
sets S (Ti1, 11 8). s & 8 (1;) of (2.2), (2.3). Here the functions 5(t;, s), vg (- Ti» Toy So) Of (3.2)
will converge to ¥ (1;.8), v (-, T Ty, 8) of (2.4), which are defined by the system of measures

Pt 1.8 ACS (Tin) s S (1), i=0,...,n—1}. Consequently, equalities (2.5)follow
from equalities (3.14), which proves Theorem 1.

a.e + Thus, strategy Uis not a
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4. We consider a conflict-controlled linear system (2.6) with the convex target function
o (). Theorem 2 can be proved by the scheme in /2/.
We present the proof of Theorem 2. The necessity of conditions (2.5) follows directly
from Theorem 1. Let us assume that for some positional strategy (7, there exists a system of

measures {B (4, 1;,,, i, sHh A C S (1), s=S (1), i = 0...., n —1} for which relations(2.5) are fulfilled.

We show that U, solves Problem 1. Let U be any other positional strategy, zl-]= 2[-. 1, 7, (.
v [, 2,f-1= z2.l-, %%, 75 U,, vi-]] be the motions generated by one and the same control =[-]. where
zyl-, T, 20 Uwo v [-]] is the maximizing motion for strategy U,. Then from (2.5)— (2.7) we obtain

< A* (1) (11, sw)- (2x [T1] — 2 [12]) > B (dswy Ty Tor 59) =
S(11)

P (Tor So) - {un [Tl —u [1,])> = min <P (ty, o) (u —u{T,])> <0
uESP(ts)

where ul[tl = u (15, 5,) and the function (1, s) of (2.7) is specified in terms of the system of
measures (B (&, Ty, TH ) A CTS (). se S (y;)) defined by strategy U,. From the latter estimate
we see that a set D (1) of nonzero measure B(., 1,7, s) exXists such that the inequality

P (1, sa lml)-4 (1) (@ (1] — 2z [ <O
is fulfilled for all s,iyleD (v) C S(y). We assume further by induction that the estimate

A (T s (1) 4 (1) (g [Ti] — 2 (1l <O (4.1)

sy [ul e D (w), v(D (u), T, T s) >0
is valid for instant 1t; . Let us show that a motion =.[-. %, 2o, U, v{:]] can be found, for which
estimate (4.l1) is preserved at instant 1, . Indeed, from (2.5)— (2.7) and (4.1) we have

(A* (ti.,.]) P (Ti-ﬂ_’ s*)-(.‘t* [Ti+1] -z [Ti+1])> B (ds*v Tigrr fp Sx [Ti]) =
S(ti, 1)

(g aalT - A (1) (2 L1, ] — 2[00 + 0 (7 sul v D (ua[7;]—u 7,1 <

min (v, sk [ (w—ulr]h <O
ui—:P(ti)

Therefore, a set D (y,) (v(D (%), T To 5} >0) exists such that the inequality
O (Tipp Se [Tq) 4 (7)) (2 [yl —= [Ti+1])> <0

is fulfilled for all se[f,l =D (7,) . Hence, using (3.2) and the convexity of o (), we final-
ly obtain

(S - 81— 218D > <0

0 (z, [0)) = max ¢ (z [8, 7, 7, U} < max o (z(d, 1, 20, UD
x(-] x[-]

which proves Theorem 2.
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